1) Introduction to Advanced Functions π€
By now, youβve explored linear, quadratic, exponential, and logarithmic functions, plus some transformations (shifts, stretches, reflections). At Level 4, we delve deeper into:
- Function composition and its properties.
- Inverses of more complex functions (including domain/range restrictions).
- Piecewise & parametric forms for modeling more intricate behaviors.
- Advanced transformations beyond simple shifts and scales (reflections across lines, horizontal/vertical compressions).
- Additional types: absolute value and rational transformations, etc.
Weβll start simply to refresh, then progress to powerful transformations and compositions!
2) Composition of Functions ποΈ
2.1 Basic Composition
If \( f(x) \) and \( g(x) \) are functions, the composition \( (f\circ g)(x) \) means \( f(g(x)) \).
Example 1:
- Let \( f(x)=2x-1 \) and \( g(x)=x^2 \).
- \( (f\circ g)(x)= f(x^2)= 2x^2-1 \).
- \( (g\circ f)(x)= g(2x-1)= (2x-1)^2= 4x^2-4x+1 \).
Note: Order matters in composition.
2.2 Composing More Complex Functions
Composition may involve exponentials, logarithms, or piecewise definitions. Always check the domain.
Example 2 (Advanced):
- \( f(x)=\ln(x) \) and \( g(x)= e^x-2 \).
- \( (f\circ g)(x)= \ln(e^x-2) \), with domain \( e^x-2>0 \) (i.e. \( x>\ln2 \)).
3) Inverse Functions and Restrictions π
An inverse function \( f^{-1} \) undoes the work of \( f \). For an invertible function, \( (f\circ f^{-1})(x)=x \).
3.1 Finding Inverses
- Write \( y=f(x) \).
- Solve for \( x \) in terms of \( y \).
- Swap variables to get \( f^{-1}(x) \).
Example 3: For \( f(x)=\frac{3x-4}{2} \):
- Let \( y=\frac{3x-4}{2} \).
- Solve: \( 2y=3x-4 \) so \( 3x=2y+4 \) and \( x=\frac{2y+4}{3} \).
- Thus, \( f^{-1}(x)=\frac{2x+4}{3} \).
3.2 Domain & Range
For an inverse to exist, \( f \) must be one-to-one. We often restrict the domain if needed.
Example 4: \( f(x)=x^2 \) is not invertible on all \( \mathbb{R} \). Restrict \( x\ge0 \) to define \( f^{-1}(x)=\sqrt{x} \).
4) Piecewise & Parametric Forms π
4.1 Piecewise-Defined Functions
A function may have different formulas on different intervals.
Example 5 (Piecewise):
\( f(x)= \begin{cases} x+2, & x<1 \\ x^2-1, & x\ge1 \end{cases} \)
Graph each section and check continuity at the transition point \( x=1 \).
4.2 Parametric Equations
Instead of expressing \( y \) directly as a function of \( x \), we define both in terms of a parameter \( t \).
Example 6:
\( x=2\cos t,\quad y=2\sin t,\quad t\in[0,2\pi] \)
This traces a circle of radius 2.
5) Advanced Transformations π§
5.1 Horizontal/Vertical Shifts & Scales
- \( y=f(x-h)+k \): shift right \( h \) and up \( k \).
- \( y=A\cdot f(x) \): vertical scaling by \(|A|\); if \(A<0\), reflect across the x-axis.
- \( y=f(Bx) \): horizontal scaling by \( 1/|B| \); if \(B<0\), reflect across the y-axis.
Example 7: If \( f(x)=x^3 \), then for \( g(x)=-2f(3x+1)+4 \):
- \( 3x+1 \) implies a horizontal shift left by \(\frac{1}{3}\) and a compression by factor \(\frac{1}{3}\).
- Multiplying by \(-2\) reflects vertically and scales by 2.
- Add 4 shifts the graph upward by 4.
5.2 Reflections Across Other Lines
Advanced transformations may reflect across lines (e.g., reflecting across \( y=x \) swaps the roles of \( x \) and \( y \), akin to finding the inverse).
6) Examples (Detailed) π
Example 8 (Composition with Domain Constraints)
Problem: Let \( f(x)=\sqrt{x-1} \) and \( g(x)=(x+2)^2 \). Find \( (f\circ g)(x) \) and its domain.
- \( (f\circ g)(x)= \sqrt{(x+2)^2-1} \).
- Simplify: \(\sqrt{x^2+4x+3}\).
- Domain: Require \( x^2+4x+3\ge0 \). Factor as \((x+1)(x+3)\ge0\), so \( x\in(-\infty,-3]\cup[-1,\infty) \).
Example 9 (Inverse Function)
Problem: If \( f(x)=2e^x-1 \), find \( f^{-1}(x) \).
- Write \( y=2e^x-1 \) and solve: \( y+1=2e^x \) so \( e^x=\frac{y+1}{2} \).
- Take logs: \( x=\ln\Bigl(\frac{y+1}{2}\Bigr) \).
- Swap variables: \( f^{-1}(x)=\ln\Bigl(\frac{x+1}{2}\Bigr) \). (Domain for inverse: \( x>-1 \)).
Example 10 (Piecewise with Transformations)
Problem: Let \[ f(x)= \begin{cases} x+2, & x<0 \\ x^2, & x\ge0 \end{cases} \] Apply \( g(x)=-f(x-1)+4 \).
- For \( x-1<0 \) (i.e. \( x<1 \)): \( f(x-1)=(x-1)+2=x+1 \), so \( g(x)=-[x+1]+4=3-x \).
- For \( x-1\ge0 \) (i.e. \( x\ge1 \)): \( f(x-1)=(x-1)^2 \), so \( g(x)=-(x-1)^2+4 \).
Thus, \[ g(x)= \begin{cases} 3-x, & x<1 \\ 4-(x-1)^2, & x\ge1 \end{cases} \]
7) Practice Questions π―
7.1 Fundamental β Build Skills (10+)
- Composition: Let \( f(x)=x^2+1 \) and \( g(x)=\sqrt{x-3} \). Find \( (f\circ g)(x) \) and its domain.
- Inverse: For \( f(x)=\frac{3x-5}{2x+4} \), find \( f^{-1}(x) \) with domain and range restrictions.
- Piecewise: Given \[ h(x)=\begin{cases} x+1, & x<2 \\ (x-2)^2, & x\ge2 \end{cases}, \] evaluate \( h(-1) \) and \( h(3) \) and graph roughly.
- Transformations: If \( f(x)=x^3 \), define \( g(x)=-2f(3x+1)+1 \). Describe the transformations step by step.
- Parametric: Show that \( x=\cos t,\ y=\sin t \) traces a unit circle. For which \( t \) does it complete the circle?
- Composition: Let \( f(x)=\ln x \) and \( g(x)=e^x+2 \). Find \( (g\circ f)(x) \) and its domain.
- Inverse: Restrict \( f(x)=x^2-2x+5 \) to \( x\ge1 \) and find its inverse.
- Shift & Scale: Start with \( y=\sqrt{x} \). Write the new function after shifting right 2, reflecting horizontally, scaling vertically by 3, and shifting up 1.
- Piecewise: For \( f(x)=|x| \), define \( g(x)=f(x-3)+2 \). Write \( g(x) \) as a piecewise function and find its domain and range.
- Composition: Let \( f(x)=2^x \) and \( g(x)=x+1 \). Find \( (f\circ g)(x) \) and \( (g\circ f)(x) \); which is larger for large \( x \)?
7.2 Challenging β Push Limits (5+)
- π₯ Advanced Inverse: If \( f(x)=e^x+e^{-x} \), solve \( f(x)=y \) for \( x \) in terms of \( y \). (Hint: form a quadratic in \( e^x \)).
- π₯ Piecewise Composition: Given \[ f(x)=\begin{cases} x+2, & x<0 \\ x^2, & x\ge0 \end{cases},\quad g(x)=\begin{cases} -x, & x\le2 \\ 2x-1, & x>2 \end{cases}, \] find \( (f\circ g)(x) \) piecewise.
- π₯ Parametric: Suppose \( x=t^2 \) and \( y=t^3-t \). Eliminate \( t \) if possible or describe the curve.
- π₯ Transformations: If \( y=\frac{1}{x} \), apply a transformation that shifts left 1, reflects across the x-axis, and stretches horizontally by a factor of 2. Write the new function.
- π₯ Composition: Solve \( (f\circ f)(x)=3 \) for \( f(x)=x^2-4 \); that is, solve \( ((x^2-4)^2-4)=3 \) for real \( x \).
8) Summary
- Function composition merges two functions into one, but domain issues must be handled carefully.
- Inverse functions require a one-to-one relationship; sometimes the domain must be restricted.
- Piecewise functions allow different formulas over different intervals.
- Transformations (shifts, scales, reflections) can be combined to produce complex mappings.
- These advanced function concepts enable sophisticated modeling and problem-solving in mathematics.
With these techniques, you can construct and manipulate advanced functions to model real-world scenarios and solve challenging problems. Keep practicing, and enjoy the power of advanced functions! π