CodeMathFusion

๐Ÿš€ Level 3 - Topic 8: Improper Integrals ๐ŸŒŸ

Handling Infinite Limits and Discontinuities

1) Introduction: Beyond Standard Integrals ๐Ÿ“

So far, weโ€™ve integrated functions over finite intervals with no issues. But what happens when limits are infinite or the function has discontinuities? Enter improper integrals! These extend our integration skills to handle such cases, opening up new mathematical horizons.

Weโ€™ll learn:

  • Improper Integrals: Integrals with infinite bounds or vertical asymptotes.
  • Convergence and Divergence: When these integrals have a finite value or not.
  • Examples: Step-by-step solutions.
Letโ€™s explore this advanced topic! ๐ŸŽ‰

Quick Recap: \( \int_a^b f(x) \, dx = F(b) - F(a) \) works for finite, continuous intervals.

2) What Are Improper Integrals? ๐ŸŽ“

Improper integrals occur when at least one limit is infinite (e.g., \( \int_1^\infty f(x) \, dx \)) or when \( f(x) \) is unbounded within the interval (e.g., at a vertical asymptote). We define them using limits.

Definition 15.1: Improper Integral

  • Infinite limit: \( \int_a^\infty f(x) \, dx = \lim_{b \to \infty} \int_a^b f(x) \, dx \).
  • Infinite discontinuity: \( \int_a^b f(x) \, dx = \lim_{c \to a^+} \int_c^b f(x) \, dx \) (if discontinuity at \( a \)).

An integral converges if the limit exists; otherwise, it diverges.

Example 1: Infinite Upper Limit

Evaluate \( \int_1^\infty \frac{1}{x^2} \, dx \).

  • Limit: \( \lim_{b \to \infty} \int_1^b \frac{1}{x^2} \, dx \).
  • Antiderivative: \( -\frac{1}{x} \).
  • Evaluate: \( \lim_{b \to \infty} \left[ -\frac{1}{x} \right]_1^b = \lim_{b \to \infty} \left( -\frac{1}{b} + 1 \right) = 0 + 1 = 1 \).

Answer: Converges to 1.

Example 2: Discontinuity at Endpoint

Evaluate \( \int_0^1 \frac{1}{\sqrt{x}} \, dx \).

  • Limit: \( \lim_{c \to 0^+} \int_c^1 \frac{1}{\sqrt{x}} \, dx \).
  • Antiderivative: \( 2\sqrt{x} \).
  • Evaluate: \( \lim_{c \to 0^+} \left[ 2\sqrt{x} \right]_c^1 = 2 - 2\sqrt{c} \).
  • As \( c \to 0^+ \), \( 2\sqrt{c} \to 0 \), so the result is 2.

Answer: Converges to 2.

3) Convergence and Divergence ๐Ÿ“

An improper integral converges if its limit is finite; otherwise, it diverges. Letโ€™s test some cases.

Example 3: Divergent Integral

Evaluate \( \int_1^\infty \frac{1}{x} \, dx \).

  • Limit: \( \lim_{b \to \infty} \int_1^b \frac{1}{x} \, dx \).
  • Antiderivative: \( \ln|x| \).
  • Evaluate: \( \lim_{b \to \infty} \left[ \ln x \right]_1^b = \lim_{b \to \infty} (\ln b - \ln 1) = \infty \).

Answer: Diverges.

Example 4: Discontinuity Inside

Evaluate \( \int_{-1}^1 \frac{1}{x^2} \, dx \).

  • Split at \( x = 0 \): \( \lim_{c \to 0^-} \int_{-1}^c \frac{1}{x^2} \, dx + \lim_{d \to 0^+} \int_d^1 \frac{1}{x^2} \, dx \).
  • Antiderivative: \( -\frac{1}{x} \).
  • First part: \( \lim_{c \to 0^-} \left[ -\frac{1}{x} \right]_{-1}^c = -\frac{1}{c} - 1 \to \infty \).
  • Second part: \( \lim_{d \to 0^+} \left[ -\frac{1}{x} \right]_d^1 = -1 + \frac{1}{d} \to \infty \).

Answer: Diverges.

4) Advanced Examples ๐Ÿ”

Example 5: Double Infinite

Evaluate \( \int_{-\infty}^\infty e^{-x^2} \, dx \).

  • Split: \( \lim_{a \to -\infty} \int_a^0 e^{-x^2} \, dx + \lim_{b \to \infty} \int_0^b e^{-x^2} \, dx \).
  • Due to symmetry, \( 2 \int_0^\infty e^{-x^2} \, dx \).
  • Standard result: \( \int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2} \).
  • Total: \( 2 \cdot \frac{\sqrt{\pi}}{2} = \sqrt{\pi} \).

Answer: Converges to \( \sqrt{\pi} \).

Example 6: Mixed Case

Evaluate \( \int_0^2 \frac{1}{\sqrt{2 - x}} \, dx \).

  • Limit: \( \lim_{c \to 2^-} \int_0^c \frac{1}{\sqrt{2 - x}} \, dx \).
  • Substitute \( u = 2 - x \), \( du = -dx \).
  • New limits: \( x = 0 \) to \( u = 2 \), \( x = c \) to \( u = 2 - c \).
  • Integrate: \( \lim_{c \to 2^-} \int_2^{2-c} \frac{-du}{\sqrt{u}} = \lim_{c \to 2^-} \left[ -2\sqrt{u} \right]_2^{2-c} = \lim_{c \to 2^-} (-2\sqrt{2-c} + 2\sqrt{2}) \to \infty \).

Answer: Diverges.

5) Practice Questions ๐ŸŽฏ

Fundamental Practice Questions ๐ŸŒฑ

Instructions: Evaluate the improper integral and determine if it converges or diverges. ๐Ÿ“š

\( \int_1^\infty \frac{1}{x^3} \, dx \)

\( \int_0^1 \frac{1}{x} \, dx \)

\( \int_{-\infty}^0 e^x \, dx \)

\( \int_0^2 \frac{1}{\sqrt{2 - x}} \, dx \)

\( \int_1^\infty \frac{1}{x^2 + 1} \, dx \)

\( \int_{-\infty}^\infty e^{-|x|} \, dx \)

\( \int_0^1 \frac{1}{\sqrt{1 - x}} \, dx \)

\( \int_2^\infty \frac{1}{x \ln x} \, dx \)

\( \int_{-\infty}^0 x e^x \, dx \)

\( \int_0^\infty e^{-2x} \, dx \)

\( \int_{-1}^1 \frac{1}{x^2} \, dx \)

Challenging Practice Questions ๐ŸŒŸ

Instructions: These involve complex limits or multiple discontinuities. ๐Ÿง 

Evaluate \( \int_0^\infty \frac{\sin(x)}{x} \, dx \) and discuss convergence.

Compute \( \int_{-\infty}^\infty \frac{1}{1 + x^2} \, dx \) using symmetry.

Determine if \( \int_0^1 \frac{1}{x^p} \, dx \) converges for \( p = 0.5 \).

Find \( \int_{-1}^1 \frac{1}{(x - 1)^2} \, dx \) and explain the result.

Evaluate \( \int_0^\infty x e^{-x^2} \, dx \) using substitution.

6) Summary & Cheat Sheet ๐Ÿ“‹

6.1) Improper Integrals

Use limits for infinite bounds or discontinuities: \( \lim_{b \to \infty} \int_a^b \) or \( \lim_{c \to a} \int_c^b \).

6.2) Convergence

Converges if the limit is finite; diverges if infinite.

6.3) Tip

Check for symmetry or substitution to simplify complex cases.

Youโ€™ve tackled improper integrals! Youโ€™ve now completed Level 3โ€”congratulations! ๐ŸŽ‰