1) Introduction: Beyond Standard Integrals ๐
So far, weโve integrated functions over finite intervals with no issues. But what happens when limits are infinite or the function has discontinuities? Enter improper integrals! These extend our integration skills to handle such cases, opening up new mathematical horizons.
Weโll learn:
- Improper Integrals: Integrals with infinite bounds or vertical asymptotes.
- Convergence and Divergence: When these integrals have a finite value or not.
- Examples: Step-by-step solutions.
Quick Recap: \( \int_a^b f(x) \, dx = F(b) - F(a) \) works for finite, continuous intervals.
2) What Are Improper Integrals? ๐
Improper integrals occur when at least one limit is infinite (e.g., \( \int_1^\infty f(x) \, dx \)) or when \( f(x) \) is unbounded within the interval (e.g., at a vertical asymptote). We define them using limits.
Definition 15.1: Improper Integral
- Infinite limit: \( \int_a^\infty f(x) \, dx = \lim_{b \to \infty} \int_a^b f(x) \, dx \).
- Infinite discontinuity: \( \int_a^b f(x) \, dx = \lim_{c \to a^+} \int_c^b f(x) \, dx \) (if discontinuity at \( a \)).
An integral converges if the limit exists; otherwise, it diverges.
Example 1: Infinite Upper Limit
Evaluate \( \int_1^\infty \frac{1}{x^2} \, dx \).
- Limit: \( \lim_{b \to \infty} \int_1^b \frac{1}{x^2} \, dx \).
- Antiderivative: \( -\frac{1}{x} \).
- Evaluate: \( \lim_{b \to \infty} \left[ -\frac{1}{x} \right]_1^b = \lim_{b \to \infty} \left( -\frac{1}{b} + 1 \right) = 0 + 1 = 1 \).
Answer: Converges to 1.
Example 2: Discontinuity at Endpoint
Evaluate \( \int_0^1 \frac{1}{\sqrt{x}} \, dx \).
- Limit: \( \lim_{c \to 0^+} \int_c^1 \frac{1}{\sqrt{x}} \, dx \).
- Antiderivative: \( 2\sqrt{x} \).
- Evaluate: \( \lim_{c \to 0^+} \left[ 2\sqrt{x} \right]_c^1 = 2 - 2\sqrt{c} \).
- As \( c \to 0^+ \), \( 2\sqrt{c} \to 0 \), so the result is 2.
Answer: Converges to 2.
3) Convergence and Divergence ๐
An improper integral converges if its limit is finite; otherwise, it diverges. Letโs test some cases.
Example 3: Divergent Integral
Evaluate \( \int_1^\infty \frac{1}{x} \, dx \).
- Limit: \( \lim_{b \to \infty} \int_1^b \frac{1}{x} \, dx \).
- Antiderivative: \( \ln|x| \).
- Evaluate: \( \lim_{b \to \infty} \left[ \ln x \right]_1^b = \lim_{b \to \infty} (\ln b - \ln 1) = \infty \).
Answer: Diverges.
Example 4: Discontinuity Inside
Evaluate \( \int_{-1}^1 \frac{1}{x^2} \, dx \).
- Split at \( x = 0 \): \( \lim_{c \to 0^-} \int_{-1}^c \frac{1}{x^2} \, dx + \lim_{d \to 0^+} \int_d^1 \frac{1}{x^2} \, dx \).
- Antiderivative: \( -\frac{1}{x} \).
- First part: \( \lim_{c \to 0^-} \left[ -\frac{1}{x} \right]_{-1}^c = -\frac{1}{c} - 1 \to \infty \).
- Second part: \( \lim_{d \to 0^+} \left[ -\frac{1}{x} \right]_d^1 = -1 + \frac{1}{d} \to \infty \).
Answer: Diverges.
4) Advanced Examples ๐
Example 5: Double Infinite
Evaluate \( \int_{-\infty}^\infty e^{-x^2} \, dx \).
- Split: \( \lim_{a \to -\infty} \int_a^0 e^{-x^2} \, dx + \lim_{b \to \infty} \int_0^b e^{-x^2} \, dx \).
- Due to symmetry, \( 2 \int_0^\infty e^{-x^2} \, dx \).
- Standard result: \( \int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2} \).
- Total: \( 2 \cdot \frac{\sqrt{\pi}}{2} = \sqrt{\pi} \).
Answer: Converges to \( \sqrt{\pi} \).
Example 6: Mixed Case
Evaluate \( \int_0^2 \frac{1}{\sqrt{2 - x}} \, dx \).
- Limit: \( \lim_{c \to 2^-} \int_0^c \frac{1}{\sqrt{2 - x}} \, dx \).
- Substitute \( u = 2 - x \), \( du = -dx \).
- New limits: \( x = 0 \) to \( u = 2 \), \( x = c \) to \( u = 2 - c \).
- Integrate: \( \lim_{c \to 2^-} \int_2^{2-c} \frac{-du}{\sqrt{u}} = \lim_{c \to 2^-} \left[ -2\sqrt{u} \right]_2^{2-c} = \lim_{c \to 2^-} (-2\sqrt{2-c} + 2\sqrt{2}) \to \infty \).
Answer: Diverges.
5) Practice Questions ๐ฏ
Fundamental Practice Questions ๐ฑ
Instructions: Evaluate the improper integral and determine if it converges or diverges. ๐
\( \int_1^\infty \frac{1}{x^3} \, dx \)
\( \int_0^1 \frac{1}{x} \, dx \)
\( \int_{-\infty}^0 e^x \, dx \)
\( \int_0^2 \frac{1}{\sqrt{2 - x}} \, dx \)
\( \int_1^\infty \frac{1}{x^2 + 1} \, dx \)
\( \int_{-\infty}^\infty e^{-|x|} \, dx \)
\( \int_0^1 \frac{1}{\sqrt{1 - x}} \, dx \)
\( \int_2^\infty \frac{1}{x \ln x} \, dx \)
\( \int_{-\infty}^0 x e^x \, dx \)
\( \int_0^\infty e^{-2x} \, dx \)
\( \int_{-1}^1 \frac{1}{x^2} \, dx \)
Challenging Practice Questions ๐
Instructions: These involve complex limits or multiple discontinuities. ๐ง
Evaluate \( \int_0^\infty \frac{\sin(x)}{x} \, dx \) and discuss convergence.
Compute \( \int_{-\infty}^\infty \frac{1}{1 + x^2} \, dx \) using symmetry.
Determine if \( \int_0^1 \frac{1}{x^p} \, dx \) converges for \( p = 0.5 \).
Find \( \int_{-1}^1 \frac{1}{(x - 1)^2} \, dx \) and explain the result.
Evaluate \( \int_0^\infty x e^{-x^2} \, dx \) using substitution.
6) Summary & Cheat Sheet ๐
6.1) Improper Integrals
Use limits for infinite bounds or discontinuities: \( \lim_{b \to \infty} \int_a^b \) or \( \lim_{c \to a} \int_c^b \).
6.2) Convergence
Converges if the limit is finite; diverges if infinite.
6.3) Tip
Check for symmetry or substitution to simplify complex cases.
Youโve tackled improper integrals! Youโve now completed Level 3โcongratulations! ๐