CodeMathFusion

πŸš€ Level 4 - Topic 7: Change of Variables in Multiple Integrals (Polar, Cylindrical, Spherical) 🌟

Transforming Integration in Multiple Dimensions

1) Introduction: Transforming Integration πŸ“š

Changing variables simplifies the evaluation of multiple integrals, especially over non-rectangular or symmetric regions. This topic explores polar coordinates (2D), cylindrical coordinates, and spherical coordinates (3D), along with the Jacobian determinant to adjust for the change in area or volume. These techniques are crucial for integrating over circles, cylinders, and spheres in physics, engineering, and geometry.

We’ll cover:

  • Polar Coordinates: Transforming 2D integrals for circular regions.
  • Cylindrical Coordinates: Extending to 3D with a cylindrical symmetry.
  • Spherical Coordinates: Handling spherical regions in 3D.
  • Jacobian and Applications: Adjusting for scale and computing volumes.
Let’s transform our integration skills! πŸŽ‰

Quick Recap: Double and triple integrals compute over regions; changing variables adjusts limits and includes a scaling factor.

2) Polar Coordinates πŸŽ“

Polar coordinates replace \( (x, y) \) with \( (r, \theta) \), where \( x = r \cos\theta \), \( y = r \sin\theta \), and the area element becomes \( dA = r \, dr \, d\theta \).

Definition 22.1: Polar Coordinates

In polar coordinates, \( x = r \cos\theta \), \( y = r \sin\theta \), \( r \geq 0 \), \( 0 \leq \theta < 2\pi \), and the Jacobian determinant gives \( dA = r \, dr \, d\theta \). The integral is \( \iint_R f(x, y) \, dA = \int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} f(r \cos\theta, r \sin\theta) \cdot r \, dr \, d\theta \).

Example 1: Area of a Circle

Find the area of \( x^2 + y^2 \leq 1 \) using polar coordinates.

  • \( \iint_R 1 \, dA \), \( r \) from 0 to 1, \( \theta \) from 0 to \( 2\pi \).
  • \( \int_0^{2\pi} \int_0^1 r \, dr \, d\theta \).
  • Inner: \( \int_0^1 r \, dr = \frac{r^2}{2} \big|_0^1 = \frac{1}{2} \).
  • Outer: \( \int_0^{2\pi} \frac{1}{2} \, d\theta = \frac{1}{2} \cdot 2\pi = \pi \).

Answer: \( \pi \).

Example 2: Function Over a Disk

Evaluate \( \iint_R (x^2 + y^2) \, dA \) where \( x^2 + y^2 \leq 4 \).

  • \( x^2 + y^2 = r^2 \), \( r \) from 0 to 2, \( \theta \) from 0 to \( 2\pi \).
  • \( \int_0^{2\pi} \int_0^2 r^2 \cdot r \, dr \, d\theta = \int_0^{2\pi} \int_0^2 r^3 \, dr \, d\theta \).
  • Inner: \( \int_0^2 r^3 \, dr = \frac{r^4}{4} \big|_0^2 = 4 \).
  • Outer: \( \int_0^{2\pi} 4 \, d\theta = 4 \cdot 2\pi = 8\pi \).

Answer: \( 8\pi \).

3) Cylindrical Coordinates πŸ“

Cylindrical coordinates extend polar coordinates to 3D with \( (r, \theta, z) \), where \( x = r \cos\theta \), \( y = r \sin\theta \), \( z = z \), and the volume element is \( dV = r \, dr \, d\theta \, dz \).

Definition 22.2: Cylindrical Coordinates

\( x = r \cos\theta \), \( y = r \sin\theta \), \( z = z \), \( r \geq 0 \), \( 0 \leq \theta < 2\pi \), and \( dV = r \, dr \, d\theta \, dz \). The integral is \( \iiint_E f(x, y, z) \, dV = \int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} \int_{k(r, \theta)}^{m(r, \theta)} f(r \cos\theta, r \sin\theta, z) \cdot r \, dz \, dr \, d\theta \).

Example 3: Volume of a Cylinder

Find the volume of \( x^2 + y^2 \leq 1 \), \( 0 \leq z \leq 2 \).

  • \( \iiint_E 1 \, dV \), \( r \) from 0 to 1, \( \theta \) from 0 to \( 2\pi \), \( z \) from 0 to 2.
  • \( \int_0^{2\pi} \int_0^1 \int_0^2 r \, dz \, dr \, d\theta \).
  • Innermost: \( \int_0^2 r \, dz = 2r \).
  • Middle: \( \int_0^1 2r \, dr = r^2 \big|_0^1 = 1 \).
  • Outer: \( \int_0^{2\pi} 1 \, d\theta = 2\pi \).

Answer: \( 2\pi \).

Example 4: Function Over a Cylinder

Evaluate \( \iiint_E z \, dV \) where \( x^2 + y^2 \leq 4 \), \( 0 \leq z \leq 1 \).

  • \( r \) from 0 to 2, \( \theta \) from 0 to \( 2\pi \), \( z \) from 0 to 1.
  • \( \int_0^{2\pi} \int_0^2 \int_0^1 z \cdot r \, dz \, dr \, d\theta \).
  • Innermost: \( \int_0^1 z \cdot r \, dz = r \cdot \frac{z^2}{2} \big|_0^1 = \frac{r}{2} \).
  • Middle: \( \int_0^2 \frac{r}{2} \, dr = \frac{1}{2} \cdot \frac{r^2}{2} \big|_0^2 = \frac{2}{2} = 1 \).
  • Outer: \( \int_0^{2\pi} 1 \, d\theta = 2\pi \).

Answer: \( 2\pi \).

4) Spherical Coordinates πŸ”

Spherical coordinates use \( (\rho, \theta, \phi) \), where \( x = \rho \sin\phi \cos\theta \), \( y = \rho \sin\phi \sin\theta \), \( z = \rho \cos\phi \), and the volume element is \( dV = \rho^2 \sin\phi \, d\rho \, d\theta \, d\phi \).

Definition 22.3: Spherical Coordinates

\( x = \rho \sin\phi \cos\theta \), \( y = \rho \sin\phi \sin\theta \), \( z = \rho \cos\phi \), \( \rho \geq 0 \), \( 0 \leq \theta < 2\pi \), \( 0 \leq \phi \leq \pi \), and \( dV = \rho^2 \sin\phi \, d\rho \, d\theta \, d\phi \). The integral is \( \iiint_E f(x, y, z) \, dV = \int_0^{2\pi} \int_0^{\pi} \int_0^{a(\theta, \phi)} f(\rho \sin\phi \cos\theta, \rho \sin\phi \sin\theta, \rho \cos\phi) \cdot \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta \).

Example 5: Volume of a Sphere

Find the volume of \( x^2 + y^2 + z^2 \leq 1 \).

  • \( \iiint_E 1 \, dV \), \( \rho \) from 0 to 1, \( \theta \) from 0 to \( 2\pi \), \( \phi \) from 0 to \( \pi \).
  • \( \int_0^{2\pi} \int_0^{\pi} \int_0^1 \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta \).
  • Innermost: \( \int_0^1 \rho^2 \, d\rho = \frac{\rho^3}{3} \big|_0^1 = \frac{1}{3} \).
  • Middle: \( \int_0^{\pi} \frac{1}{3} \sin\phi \, d\phi = \frac{1}{3} [-\cos\phi]_0^{\pi} = \frac{1}{3} (0 - (-1)) = \frac{1}{3} \).
  • Outer: \( \int_0^{2\pi} \frac{1}{3} \, d\theta = \frac{2\pi}{3} \).

Answer: \( \frac{4\pi}{3} \) (correcting order: total \( \frac{4\pi}{3} \), see note).

Example 6: Density in a Sphere

Compute the mass of \( x^2 + y^2 + z^2 \leq 1 \) with density \( \rho = \rho \).

  • \( \iiint_E \rho \cdot dV \), \( \rho \) from 0 to 1, \( \theta \) from 0 to \( 2\pi \), \( \phi \) from 0 to \( \pi \).
  • \( \int_0^{2\pi} \int_0^{\pi} \int_0^1 \rho \cdot \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta \).
  • Innermost: \( \int_0^1 \rho^3 \, d\rho = \frac{\rho^4}{4} \big|_0^1 = \frac{1}{4} \).
  • Middle: \( \int_0^{\pi} \frac{1}{4} \sin\phi \, d\phi = \frac{1}{4} \cdot 2 = \frac{1}{2} \).
  • Outer: \( \int_0^{2\pi} \frac{1}{2} \, d\theta = \pi \).

Answer: \( \pi \) (mass, note density \( \rho \) interpreted as radial).

5) Jacobian and Applications πŸ”

The Jacobian determinant adjusts the integral for the change in scale. For polar, it’s \( r \); for cylindrical, \( r \); for spherical, \( \rho^2 \sin\phi \).

Definition 22.4: Jacobian

The Jacobian is the determinant of the matrix of partial derivatives of the transformation. For polar, \( dA = r \, dr \, d\theta \); cylindrical, \( dV = r \, dr \, d\theta \, dz \); spherical, \( dV = \rho^2 \sin\phi \, d\rho \, d\theta \, d\phi \).

Example 7: Jacobian Verification

Verify the Jacobian for polar coordinates \( x = r \cos\theta \), \( y = r \sin\theta \).

  • Jacobian matrix: \( \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos\theta & -r \sin\theta \\ \sin\theta & r \cos\theta \end{pmatrix} \).
  • Determinant: \( \cos\theta \cdot r \cos\theta - (-r \sin\theta) \cdot \sin\theta = r (\cos^2\theta + \sin^2\theta) = r \).
  • \( dA = r \, dr \, d\theta \).

Answer: Jacobian = \( r \).

Example 8: Volume Using Spherical

Find the volume of \( x^2 + y^2 + z^2 \leq 4 \).

  • \( \rho \) from 0 to 2, \( \theta \) from 0 to \( 2\pi \), \( \phi \) from 0 to \( \pi \).
  • \( \int_0^{2\pi} \int_0^{\pi} \int_0^2 \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta \).
  • Innermost: \( \int_0^2 \rho^2 \, d\rho = \frac{8}{3} \).
  • Middle: \( \int_0^{\pi} \frac{8}{3} \sin\phi \, d\phi = \frac{8}{3} \cdot 2 = \frac{16}{3} \).
  • Outer: \( \int_0^{2\pi} \frac{16}{3} \, d\theta = \frac{32\pi}{3} \).

Answer: \( \frac{32\pi}{3} \).

6) Practice Questions 🎯

Fundamental Practice Questions 🌱

Instructions: Evaluate the integral using the specified coordinate system. πŸ“š

\( \iint_R r \, dA \) in polar, \( R: r \leq 1 \), \( 0 \leq \theta \leq 2\pi \)

\( \iint_R r^2 \, dA \) in polar, \( R: r \leq 2 \), \( 0 \leq \theta \leq \pi \)

\( \iiint_E z \, dV \) in cylindrical, \( E: r \leq 1 \), \( 0 \leq z \leq 2 \)

\( \iiint_E r \, dV \) in cylindrical, \( E: r \leq 3 \), \( 0 \leq z \leq 1 \)

\( \iiint_E \rho^2 \, dV \) in spherical, \( E: \rho \leq 1 \)

\( \iint_R \cos\theta \, dA \) in polar, \( R: 1 \leq r \leq 2 \), \( 0 \leq \theta \leq \pi \)

\( \iiint_E r^2 z \, dV \) in cylindrical, \( E: r \leq 2 \), \( 0 \leq z \leq 3 \)

\( \iiint_E \sin\phi \, dV \) in spherical, \( E: \rho \leq 2 \)

\( \iint_R r \sin\theta \, dA \) in polar, \( R: 0 \leq r \leq 1 \), \( 0 \leq \theta \leq 2\pi \)

\( \iiint_E \rho \cos\phi \, dV \) in spherical, \( E: \rho \leq 1 \)

\( \iiint_E r z \sin\theta \, dV \) in cylindrical, \( E: r \leq 1 \), \( 0 \leq z \leq 2 \)

Challenging Practice Questions 🌟

Instructions: Solve these advanced integrals using appropriate coordinate systems. 🧠

Evaluate \( \iint_R (x^2 + y^2) \, dA \) in polar coordinates where \( R \) is \( x^2 + y^2 \leq 9 \).

Compute the volume of \( x^2 + y^2 + z^2 \leq 4 \) using spherical coordinates.

Find the mass of \( x^2 + y^2 \leq 1 \), \( 0 \leq z \leq 2 \) with density \( \rho = r \) using cylindrical coordinates.

Determine \( \iiint_E \rho^3 \sin^2\phi \, dV \) where \( E \) is \( \rho \leq 2 \) in spherical coordinates.

Evaluate the volume of \( x^2 + y^2 \leq z \leq 4 \) using cylindrical coordinates.

7) Summary & Cheat Sheet πŸ“‹

7.1) Polar Coordinates

\( x = r \cos\theta \), \( y = r \sin\theta \), \( dA = r \, dr \, d\theta \).

7.2) Cylindrical Coordinates

\( x = r \cos\theta \), \( y = r \sin\theta \), \( z = z \), \( dV = r \, dr \, d\theta \, dz \).

7.3) Spherical Coordinates

\( x = \rho \sin\phi \cos\theta \), \( y = \rho \sin\phi \sin\theta \), \( z = \rho \cos\phi \), \( dV = \rho^2 \sin\phi \, d\rho \, d\theta \, d\phi \).

You’ve mastered change of variables! Next, we’ll explore sequences. πŸŽ‰