CodeMathFusion

πŸš€ Level 5 - Topic 3: Higher-Order Differential Equations and Systems of ODEs 🌟

Mastering Complex Differential Systems

1) Introduction: Beyond First-Order Equations πŸ“š

This topic extends our knowledge of differential equations to higher-order differential equations and systems of ordinary differential equations (ODEs). These are crucial for modeling physical systems like oscillations, electrical circuits, and population dynamics. We’ll explore methods to solve linear higher-order ODEs with constant coefficients and systems using eigenvalues and eigenvectors.

We’ll cover:

  • Higher-Order ODEs: Solving with characteristic equations.
  • Systems of ODEs: Matrix methods and phase planes.
  • Applications: Real-world examples like damped motion.
Let’s dive into these advanced systems! πŸŽ‰

Quick Recap: First-order ODEs used separable methods; now we handle multiple derivatives and coupled equations.

2) Higher-Order Differential Equations πŸŽ“

A higher-order ODE is of the form \( a_n y^{(n)} + \cdots + a_1 y' + a_0 y = f(x) \).

Definition 28.1: Higher-Order ODE

For a linear ODE with constant coefficients, solve the characteristic equation \( a_n r^n + \cdots + a_1 r + a_0 = 0 \). Roots determine the general solution.

Example 1: Second-Order Homogeneous

Solve \( y'' + 4y = 0 \).

  • Characteristic: \( r^2 + 4 = 0 \), \( r = \pm 2i \).
  • Solution: \( y = c_1 \cos(2x) + c_2 \sin(2x) \).

Answer: \( y = c_1 \cos(2x) + c_2 \sin(2x) \).

Example 2: Repeated Roots

Solve \( y'' - 6y' + 9y = 0 \).

  • Characteristic: \( r^2 - 6r + 9 = 0 \), \( (r-3)^2 = 0 \), \( r = 3 \) (double).
  • Solution: \( y = (c_1 + c_2 x) e^{3x} \).

Answer: \( y = (c_1 + c_2 x) e^{3x} \).

3) Non-Homogeneous Equations πŸ“

For \( a_n y^{(n)} + \cdots = f(x) \), use a particular solution plus the homogeneous solution.

Definition 28.2: Particular Solution

Use undetermined coefficients or variation of parameters for \( f(x) \) (e.g., polynomials, exponentials).

Example 3: Undetermined Coefficients

Solve \( y'' + y = x \).

  • Homogeneous: \( r^2 + 1 = 0 \), \( r = \pm i \), \( y_h = c_1 \cos x + c_2 \sin x \).
  • Particular: \( y_p = Ax + B \), \( y_p' = A \), \( y_p'' = 0 \).
  • \( 0 + (Ax + B) = x \), \( A = 1 \), \( B = 0 \).
  • Solution: \( y = c_1 \cos x + c_2 \sin x + x \).

Answer: \( y = c_1 \cos x + c_2 \sin x + x \).

Example 4: Variation of Parameters

Solve \( y'' + y = \tan x \).

  • \( y_h = c_1 \cos x + c_2 \sin x \).
  • \( y_p = u_1 \cos x + u_2 \sin x \), \( u_1' \cos x + u_2' \sin x = 0 \), \( -u_1' \sin x + u_2' \cos x = \tan x \).
  • Solve: \( u_1' = -\sin x \tan x \), \( u_2' = \sec x \).
  • \( u_1 = \sin x \), \( u_2 = \ln|\sec x + \tan x| \).
  • \( y_p = \sin x \ln|\sec x + \tan x| \).
  • Solution: \( y = c_1 \cos x + c_2 \sin x + \sin x \ln|\sec x + \tan x| \).

Answer: \( y = c_1 \cos x + c_2 \sin x + \sin x \ln|\sec x + \tan x| \).

4) Systems of ODEs πŸ”

Systems involve multiple equations, often written as \( \mathbf{y}' = A \mathbf{y} + \mathbf{f}(t) \).

Definition 28.3: Linear System

Solve \( \mathbf{y}' = A \mathbf{y} \) using eigenvalues of \( A \). General solution: \( \mathbf{y} = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t} \).

Example 5: Two-Variable System

Solve \( \begin{cases} x' = x + y \\ y' = -x + y \end{cases} \).

  • Matrix \( A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \).
  • Characteristic: \( \det(A - \lambda I) = 0 \), \( (1-\lambda)^2 + 1 = 0 \), \( \lambda = 1 \pm i \).
  • Eigenvector for \( \lambda = 1 + i \): \( \mathbf{v} = (1, i) \).
  • Solution: \( \mathbf{y} = e^t (c_1 \cos t + c_2 \sin t) (1, 0) + e^t (c_3 \cos t + c_4 \sin t) (0, 1) \).

Answer: \( x = e^t (c_1 \cos t + c_2 \sin t) \), \( y = e^t (c_3 \cos t + c_4 \sin t) \).

Example 6: Non-Homogeneous System

Solve \( \begin{cases} x' = -y + e^t \\ y' = x \end{cases} \).

  • Homogeneous: \( \lambda^2 + 1 = 0 \), \( \lambda = \pm i \), \( \mathbf{y}_h = c_1 \cos t (1, 0) + c_2 \sin t (0, 1) \).
  • Particular: \( \mathbf{y}_p = (A e^t, B e^t) \), solve \( A = 1 \), \( B = 1 \).
  • Solution: \( x = c_1 \cos t + c_2 \sin t + e^t \), \( y = -c_1 \sin t + c_2 \cos t + e^t \).

Answer: \( x = c_1 \cos t + c_2 \sin t + e^t \), \( y = -c_1 \sin t + c_2 \cos t + e^t \).

5) Applications and Phase Planes πŸ”

Applications include damped oscillations; phase planes visualize solutions.

Definition 28.4: Phase Plane

Plot \( (x, y) \) vs. \( (x', y') \) to analyze stability.

Example 7: Damped Oscillator

Solve \( y'' + 2y' + y = 0 \).

  • Characteristic: \( r^2 + 2r + 1 = 0 \), \( (r+1)^2 = 0 \), \( r = -1 \) (double).
  • Solution: \( y = (c_1 + c_2 t) e^{-t} \).

Answer: \( y = (c_1 + c_2 t) e^{-t} \).

Example 8: Phase Plane Analysis

Analyze \( x' = y \), \( y' = -x \).

  • Solution: \( x = c_1 \cos t + c_2 \sin t \), \( y = -c_1 \sin t + c_2 \cos t \).
  • Phase plane: Circles \( x^2 + y^2 = c^2 \), periodic motion.

Answer: Circular trajectories.

6) Practice Questions 🎯

Fundamental Practice Questions 🌱

Instructions: Solve the differential equations. πŸ“š

\( y'' + 9y = 0 \)

\( y'' - 4y' + 4y = 0 \)

\( y'' + 2y' + 5y = 0 \)

\( y'' + y = \sin x \)

\( y''' - y' = 0 \)

\( \begin{cases} x' = x \\ y' = -y \end{cases} \)

\( y'' + 4y = e^x \)

\( \begin{cases} x' = y \\ y' = -x - y \end{cases} \)

\( y'' - 2y' + y = x^2 \)

\( \begin{cases} x' = 2x + y \\ y' = x + 2y \end{cases} \)

\( y''' + y' = \cos x \)

Challenging Practice Questions 🌟

Instructions: Solve these advanced ODEs or systems. 🧠

Solve \( y''' - 6y'' + 11y' - 6y = 0 \) with initial conditions \( y(0) = 1 \), \( y'(0) = 0 \), \( y''(0) = 0 \).

Find the general solution to \( \begin{cases} x' = x - 2y + e^t \\ y' = 2x - y \end{cases} \).

Determine the phase plane behavior of \( \begin{cases} x' = -y - x^3 \\ y' = x \end{cases} \).

Solve \( y^{(4)} - y = 0 \) and classify the nature of solutions.

Compute the solution to \( \begin{cases} x' = -y + \sin t \\ y' = x + \cos t \end{cases} \) with \( x(0) = 1 \), \( y(0) = 0 \).

7) Summary & Cheat Sheet πŸ“‹

7.1) Higher-Order ODEs

Solve using characteristic equation; add particular solution for non-homogeneous.

7.2) Systems of ODEs

Use eigenvalues and eigenvectors; phase planes for behavior.

7.3) Applications

Model oscillations, circuits, and dynamics.

You’ve mastered higher-order ODEs! Next, we’ll explore functional equations. πŸŽ‰