CodeMathFusion

šŸš€ Level 5 - Topic 5: Vector Calculus (Line and Surface Integrals, Green’s & Stokes’ Theorems) 🌟

Navigating Fields in Multiple Dimensions

1) Introduction: Exploring Vector Fields šŸ“š

Vector calculus extends integration to vector fields, introducing line integrals along curves and surface integrals over surfaces, unified by theorems like Green’s Theorem and Stokes’ Theorem. These concepts are foundational in physics (e.g., electromagnetism, fluid flow) and engineering, connecting 2D and 3D analyses. This topic provides a comprehensive guide to mastering these techniques.

We’ll cover:

  • Line Integrals: Work and circulation along paths.
  • Surface Integrals: Flux and area over surfaces.
  • Green’s Theorem: Linking line and double integrals.
  • Stokes’ Theorem: Extending to 3D surfaces.
Let’s dive into the world of vector fields! šŸŽ‰

Quick Recap: Multiple integrals handled scalar functions; now we integrate vector quantities.

2) Line Integrals šŸŽ“

A line integral computes work or circulation along a curve \( C \) defined by a parameterization.

Definition 30.1: Line Integral

For a vector field \( \mathbf{F} = (P, Q, R) \) and curve \( C \) parameterized by \( \mathbf{r}(t) = (x(t), y(t), z(t)) \), \( t \in [a, b] \), the line integral is \( \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt \). For scalar functions, \( \int_C f \, ds \) uses arc length \( ds = |\mathbf{r}'(t)| \, dt \).

Example 1: Scalar Line Integral

Evaluate \( \int_C y \, ds \) where \( C \) is the parabola \( y = x^2 \), \( 0 \leq x \leq 1 \).

  • Parameterize: \( x = t \), \( y = t^2 \), \( dx = dt \), \( dy = 2t \, dt \), \( ds = \sqrt{1 + (2t)^2} \, dt \).
  • \( \int_0^1 t^2 \sqrt{1 + 4t^2} \, dt \).
  • Substitute \( u = 1 + 4t^2 \), \( du = 8t \, dt \), adjust limits, compute.
  • Answer: \( \frac{1}{12}(5\sqrt{5} - 1) \).

Answer: \( \frac{1}{12}(5\sqrt{5} - 1) \).

Example 2: Vector Line Integral

Compute \( \int_C (y, -x) \cdot d\mathbf{r} \) where \( C \) is \( \mathbf{r}(t) = (\cos t, \sin t) \), \( 0 \leq t \leq \pi \).

  • \( \mathbf{r}'(t) = (-\sin t, \cos t) \).
  • \( \mathbf{F} = (\sin t, -\cos t) \), \( \mathbf{F} \cdot \mathbf{r}' = -\sin t \cdot (-\sin t) + (-\cos t) \cdot \cos t = \sin^2 t - \cos^2 t \).
  • \( \int_0^{\pi} (\sin^2 t - \cos^2 t) \, dt = \int_0^{\pi} -\cos 2t \, dt = [-\frac{\sin 2t}{2}]_0^{\pi} = 0 \).

Answer: \( 0 \).

Example 3: Work Calculation

Find work done by \( \mathbf{F} = (x, y) \) along \( y = x^2 \) from \( (0, 0) \) to \( (1, 1) \).

  • \( \mathbf{r}(t) = (t, t^2) \), \( \mathbf{r}' = (1, 2t) \).
  • \( \int_0^1 (t, t^2) \cdot (1, 2t) \, dt = \int_0^1 (t + 2t^3) \, dt = \left[\frac{t^2}{2} + \frac{t^4}{2}\right]_0^1 = \frac{1}{2} + \frac{1}{2} = 1 \).

Answer: \( 1 \).

3) Surface Integrals šŸ“

Surface integrals measure flux or surface area over a surface \( S \).

Definition 30.2: Surface Integral

For \( \mathbf{F} = (P, Q, R) \) and surface \( S \) parameterized by \( \mathbf{r}(u, v) \), the flux is \( \iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, dA \). For area, \( \iint_S dS = \iint_D \|\mathbf{r}_u \times \mathbf{r}_v\| \, dA \).

Example 4: Surface Area

Find the area of \( z = x^2 + y^2 \) above \( x^2 + y^2 \leq 1 \).

  • \( \mathbf{r}(u, v) = (u \cos v, u \sin v, u^2) \), \( u \in [0, 1] \), \( v \in [0, 2\pi] \).
  • \( \mathbf{r}_u = (\cos v, \sin v, 2u) \), \( \mathbf{r}_v = (-u \sin v, u \cos v, 0) \).
  • \( \mathbf{r}_u \times \mathbf{r}_v = (2u^2 \cos v, 2u^2 \sin v, -u) \), \( \|\cdot\| = u \sqrt{1 + 4u^2} \).
  • \( \int_0^{2\pi} \int_0^1 u \sqrt{1 + 4u^2} \, du \, dv \).

Answer: \( \frac{\pi}{6}(17\sqrt{17} - 1) \).

Example 5: Flux Through a Surface

Compute \( \iint_S (0, 0, z) \cdot d\mathbf{S} \) over \( z = 1 - x^2 - y^2 \), \( z \geq 0 \).

  • \( \mathbf{r} = (u \cos v, u \sin v, 1 - u^2) \), normal \( \mathbf{n} = (-2u \cos v, -2u \sin v, 1) \).
  • Flux = \( \int_0^{2\pi} \int_0^1 (1 - u^2) \cdot 1 \, du \, dv = 2\pi \int_0^1 (1 - u^2) \, du = 2\pi \left[u - \frac{u^3}{3}\right]_0^1 = 2\pi \cdot \frac{2}{3} \).

Answer: \( \frac{4\pi}{3} \).

Example 6: Parametrized Surface

Evaluate \( \iint_S \mathbf{F} \cdot d\mathbf{S} \) where \( \mathbf{F} = (y, x, z) \), \( S: z = \sqrt{x^2 + y^2} \), \( x^2 + y^2 \leq 1 \).

  • Parameterize, compute normal, integrate.

Answer: \( \frac{\pi}{2} \).

4) Green’s Theorem šŸ”

Green’s Theorem connects line integrals around a closed curve to double integrals over the enclosed region.

Definition 30.3: Green’s Theorem

\( \oint_C (P \, dx + Q \, dy) = \iint_R \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \), where \( C \) is a simple closed curve and \( R \) is the region it encloses.

Example 7: Applying Green’s Theorem

Evaluate \( \oint_C (x^2 - y^2) \, dx + (x + y) \, dy \) where \( C \) is \( x^2 + y^2 = 1 \).

  • \( P = x^2 - y^2 \), \( Q = x + y \).
  • \( \frac{\partial Q}{\partial x} = 1 \), \( \frac{\partial P}{\partial y} = -2y \).
  • \( \iint_R (1 + 2y) \, dA \), use polar: \( y = r \sin \theta \).

Answer: \( 0 \) (symmetric).

Example 8: Verification

Compute \( \oint_C (-y \, dx + x \, dy) \) for \( x^2 + y^2 = 4 \).

  • \( \frac{\partial}{\partial x}(x) = 1 \), \( \frac{\partial}{\partial y}(-y) = -1 \).
  • \( \iint_R (1 - (-1)) \, dA = 2 \cdot \pi \cdot 2^2 = 8\pi \).

Answer: \( 8\pi \).

5) Stokes’ Theorem šŸ”

Stokes’ Theorem generalizes Green’s Theorem to surfaces in 3D.

Definition 30.4: Stokes’ Theorem

\( \oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} \), where \( C \) is the boundary of surface \( S \).

Example 9: Stokes’ Application

Evaluate \( \oint_C (y, 0, 0) \cdot d\mathbf{r} \) where \( C \) is \( x^2 + y^2 = 1 \), \( z = 0 \), with \( S \) as \( z = 1 - x^2 - y^2 \).

  • \( \nabla \times \mathbf{F} = (0, 0, -1) \).
  • \( \iint_S (-1) \, dS = -\pi \).

Answer: \( -\pi \).

Example 10: 3D Surface

Compute \( \oint_C (z, x, y) \cdot d\mathbf{r} \) for \( C \) bounding \( z = x^2 + y^2 \), \( z \leq 1 \).

  • \( \nabla \times \mathbf{F} = (0, 0, 2) \), integrate over \( S \).

Answer: \( 2\pi \).

6) Practice Questions šŸŽÆ

Fundamental Practice Questions 🌱

Instructions: Evaluate the line or surface integrals. šŸ“š

\( \int_C x \, ds \) where \( C \) is \( y = x^3 \), \( 0 \leq x \leq 1 \)

\( \int_C (y, x) \cdot d\mathbf{r} \) where \( C \) is \( x = t^2 \), \( y = t \), \( 0 \leq t \leq 1 \)

\( \iint_S z \, dS \) where \( S \) is \( z = x + y \), \( 0 \leq x, y \leq 1 \)

\( \oint_C (x^2, y^2) \cdot d\mathbf{r} \) where \( C \) is \( x^2 + y^2 = 1 \)

\( \iint_S (0, 0, 1) \cdot d\mathbf{S} \) where \( S \) is \( z = 4 - x^2 - y^2 \), \( z \geq 0 \)

\( \int_C (x, 2y) \cdot d\mathbf{r} \) where \( C \) is \( y = \sin x \), \( 0 \leq x \leq \pi \)

\( \iint_S \mathbf{F} \cdot d\mathbf{S} \) where \( \mathbf{F} = (x, y, z) \), \( S: z = x^2 + y^2 \), \( z \leq 1 \)

\( \oint_C (y, -x) \cdot d\mathbf{r} \) where \( C \) is \( x^2 + y^2 = 9 \)

\( \iint_S (x, y, 0) \cdot d\mathbf{S} \) where \( S \) is \( z = \sqrt{1 - x^2 - y^2} \)

\( \int_C (xy, x^2) \cdot d\mathbf{r} \) where \( C \) is \( y = x^2 \) from \( (0, 0) \) to \( (2, 4) \)

\( \iint_S (0, 0, x) \cdot d\mathbf{S} \) where \( S \) is \( x + y + z = 1 \), \( x, y, z \geq 0 \)

Challenging Practice Questions 🌟

Instructions: Solve these advanced vector calculus problems. 🧠

Evaluate \( \oint_C (x^3, y^3) \cdot d\mathbf{r} \) where \( C \) is the boundary of \( x^2 + y^2 \leq 4 \), using Green’s Theorem.

Compute \( \iint_S (z^2, xz, y) \cdot d\mathbf{S} \) where \( S \) is \( z = 1 - x^2 - y^2 \), \( z \geq 0 \), using Stokes’ Theorem.

Find the flux of \( \mathbf{F} = (x^2, y^2, z^2) \) through \( x^2 + y^2 + z^2 = 4 \), \( z \geq 0 \).

Determine \( \oint_C (e^x, \sin y) \cdot d\mathbf{r} \) for \( C \) bounding \( y = x^2 \), \( 0 \leq x \leq 1 \).

Evaluate \( \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} \) where \( \mathbf{F} = (yz, xz, xy) \), \( S \) is \( z = 1 - x^2 - y^2 \).

7) Summary & Cheat Sheet šŸ“‹

7.1) Line Integral

\( \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F} \cdot \mathbf{r}' \, dt \).

7.2) Surface Integral

\( \iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, dA \).

7.3) Green’s Theorem

\( \oint_C (P \, dx + Q \, dy) = \iint_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) \, dA \).

7.4) Stokes’ Theorem

\( \oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} \).

You’ve mastered vector calculus! Next, we’ll explore complex analysis. šŸŽ‰