100 Advanced SAT & Olympiad-Level Trigonometry Questions

Focusing on algebraic techniques and identities (no calculus).

Question 1
In a right triangle, angles \(A\) and \(B\) satisfy \(A + B = 90^\circ\). Prove that \(\sin(A) = \cos(B)\) and \(\tan(A) = \cot(B)\).
Use complementary angles: \(A + B = 90^\circ\). Express one angle in terms of the other, and recall definitions of sine and cosine in a right triangle.
Since \(A + B = 90^\circ\), \(B = 90^\circ - A\). Then \(\sin(A) = \sin(A)\) but \(\cos(B) = \cos(90^\circ - A) = \sin(A)\), etc. This proves \(\tan(A) = \cot(B)\) as well.
Question 2
Convert \(\,210^\circ\) to radians and \(\,\frac{8\pi}{9}\) to degrees.
Recall that \(180^\circ\) equals \(\pi\) radians.
\(210^\circ = 210 \times \frac{\pi}{180} = \frac{7\pi}{6}.\) \(\,\frac{8\pi}{9}\) radians \(= \frac{8\pi}{9} \times \frac{180^\circ}{\pi} = 160^\circ.\)
Question 3
On the unit circle, an angle \(\theta\) has coordinates \((x, y)\). Prove that \(x^2 + y^2 = 1\).
The unit circle is defined by \(x^2 + y^2 = 1.\)
By definition of the unit circle, any point \((x, y)\) on it satisfies \(x^2 + y^2 = 1.\)
Question 4
Simplify the expression \(\sin(45^\circ)\cdot \sec(45^\circ)\).
Recall \(\sin(45^\circ) = \frac{\sqrt{2}}{2}\) and \(\cos(45^\circ) = \frac{\sqrt{2}}{2}\). Also, \(\sec(\theta) = \frac{1}{\cos(\theta)}\).
\(\sin(45^\circ)\cdot \sec(45^\circ) = \frac{\sqrt{2}}{2} \cdot \frac{1}{\cos(45^\circ)} = \frac{\sqrt{2}}{2} \cdot \frac{1}{\sqrt{2}/2} = 1.\)
Question 5
In a right triangle with acute angles of \(\,30^\circ\) and \(\,60^\circ\), show that the sides are in the ratio 1 : \(\sqrt{3}\) : 2.
Let the side opposite \(30^\circ\) be x, the side opposite \(60^\circ\) be y, and the hypotenuse be z. Use \(\sin(30^\circ) = \frac{1}{2}\), \(\sin(60^\circ) = \frac{\sqrt{3}}{2}\).
Opposite \(30^\circ\) = 1, opposite \(60^\circ\) = \(\sqrt{3}\), and hypotenuse = 2; hence \(1 : \sqrt{3} : 2\).
Question 6
Prove the Pythagorean identity: \(\sin^2\theta + \cos^2\theta = 1\).
Think unit circle definitions of sine and cosine.
On the unit circle, \(\sin\theta = y\) and \(\cos\theta = x\) for a point \((x, y)\) on the circle \(x^2 + y^2 = 1\). Thus \(\sin^2\theta + \cos^2\theta = 1.\)
Question 7
Show that \(\csc(\theta) = \frac{1}{\sin(\theta)}\) and \(\sec(\theta) = \frac{1}{\cos(\theta)}\).
Use the definitions: csc is the reciprocal of sin, sec is the reciprocal of cos.
By definition, \(\csc(\theta) = \frac{1}{\sin(\theta)}\) and \(\sec(\theta) = \frac{1}{\cos(\theta)}\). These follow from reciprocal relationships of right-triangle sides or unit-circle definitions.
Question 8
A ladder 10 feet long leans against a wall, making an angle of \(\,60^\circ\) with the ground. Find the height it reaches on the wall.
Use \(\sin(60^\circ)\) or \(\cos(60^\circ)\), depending on which side you define as opposite or adjacent.
Height \(= 10 \cdot \sin(60^\circ) = 10 \cdot \frac{\sqrt{3}}{2} = 5\sqrt{3}\) feet.
Question 9
If \(y = \sin(x)\) has a maximum value of 1 at \(x = \frac{\pi}{2}\), find the coordinates of its peak in the \(xy\)-plane.
Evaluate \(\sin\bigl(\frac{\pi}{2}\bigr)\).
The peak is at \(\Bigl(\frac{\pi}{2}, 1\Bigr).\)
Question 10
A surveyor measures the angle of elevation to the top of a building as \(\,35^\circ\), standing 100 meters away from its base. Find the building's height (ignore eye-height).
Use \(\tan(35^\circ) = \frac{\text{opposite}}{\text{adjacent}}\).
Height \(= 100 \cdot \tan(35^\circ)\) meters (approximately \(70.0\) m if \(\tan(35^\circ)\approx 0.7002\)).
Question 11
Write the general form for the sine function: \(y = A \sin\bigl(B(x - C)\bigr) + D.\) Identify amplitude, period, phase shift, and vertical shift.
\(A\) affects amplitude, \(B\) affects period, \(C\) affects horizontal shift, \(D\) affects vertical shift.
Question 12
The function \(y = \cos(x)\) is shifted to the right by \(\frac{\pi}{3}\) and stretched vertically by 2. Write its new equation.
Horizontal shift inside the parentheses, amplitude change out front.
\(y = 2 \cos\bigl(x - \frac{\pi}{3}\bigr)\).
Question 13
Find the amplitude and period of \(y = -3 \sin(2x + \pi)\).
Amplitude \(= |A|\). Period \(= \frac{2\pi}{B}\).
Amplitude \(= 3;\) Period \(= \pi\) (since \(B = 2\)).
Question 14
Prove that if \(y = \sin^{-1}(x)\), then \(\sin(y) = x\). State the domain/range restrictions.
Inverse sine is the angle whose sine is \(x\).
By definition of inverse sine, \(y = \arcsin(x)\) means \(x = \sin(y)\). The domain of \(\arcsin(x)\) is \([-1,1]\), and the range is \(\bigl[-\frac{\pi}{2}, \frac{\pi}{2}\bigr]\).
Question 15
Use the Law of Sines to find angle \(A\) in a triangle with sides \(a=5\), \(b=7\), \(c=8\) and angle \(B\) opposite \(b\).
Law of Sines: \(\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}\).
First find \(B\) using the Law of Cosines or Sines. For instance, by Law of Cosines: \(\cos(B) = \frac{a^2 + c^2 - b^2}{2ac} = \frac{25 + 64 - 49}{2\cdot5\cdot8} = \frac{40}{80} = 0.5\) so \(B = 60^\circ\). Then using \(\frac{a}{\sin(A)} = \frac{b}{\sin(B)}\) gives: \(\frac{5}{\sin(A)} = \frac{7}{\sin(60^\circ)} = \frac{7}{\sqrt{3}/2} = \frac{14}{\sqrt{3}}.\) Hence \(\sin(A) = 5 \cdot \frac{\sqrt{3}}{14} = \frac{5\sqrt{3}}{14}\) which is approximately \(0.6160\), so \(A \approx 19.47^\circ.\)
Question 16
A triangle has sides \(13, 14, 15\). Use the Law of Cosines to find its largest angle.
The largest angle is opposite the longest side, which is \(15\).
Let the largest angle be \(C\) opposite side \(15\). Then \(\cos(C)= \frac{13^2 + 14^2 - 15^2}{2\cdot13\cdot14} = \frac{169 + 196 - 225}{364} = \frac{140}{364} = \frac{35}{91}\approx 0.3846\) so \(C\approx 67.5^\circ.\)
Question 17
Find the area of a triangle with sides \(7, 9\), and included angle \(\,60^\circ\) between them.
The area formula: \(\frac{1}{2}\,ab\,\sin(C)\).
Area \(= \frac12 \cdot 7 \cdot 9 \cdot \sin(60^\circ) = \frac{63}{2} \cdot \frac{\sqrt{3}}{2} = \frac{63\sqrt{3}}{4}.\)
Question 18
Solve the trigonometric equation: \(\sin(x) = \frac{\sqrt{3}}{2}\) for \(x\) in \([0, 2\pi]\).
\(\sin(x) = \frac{\sqrt{3}}{2}\) occurs at specific standard angles in the unit circle.
\(x = \frac{\pi}{3}\) or \(x = \frac{2\pi}{3}\) in \([0, 2\pi].\)
Question 19
Prove the identity: \(\cos(\alpha - \beta) = \cos\alpha\,\cos\beta + \sin\alpha\,\sin\beta.\)
Use sum formulas or unit circle geometry with coordinates for angles \(\alpha\) and \(\beta\).
By the standard angle addition formula, \(\cos(\alpha - \beta)= \cos\alpha\,\cos\beta + \sin\alpha\,\sin\beta\). It's derived from rotating vectors or expansions of \(e^{i\theta}\).
Question 20
Express \(\sin(75^\circ)\) using the sum of angles identity \(\sin\bigl(45^\circ + 30^\circ\bigr)\).
\(\sin(a+b)= \sin(a)\cos(b)+ \cos(a)\sin(b).\)
\(\sin(75^\circ)= \sin\bigl(45^\circ + 30^\circ\bigr) = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6}+\sqrt{2}}{4}.\)
Question 21
Show that \(\cos(2\theta) = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta\).
Use \(\cos(2\theta)=\cos^2\theta - \sin^2\theta\) and \(\sin^2\theta + \cos^2\theta = 1\).
\(\cos(2\theta)= \cos^2\theta - \sin^2\theta = \cos^2\theta - \bigl(1 - \cos^2\theta\bigr) = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta\) (substituting \(\sin^2\theta=1- \cos^2\theta\)).
Question 22
Simplify \(\tan(2\theta)\) in terms of \(\tan(\theta)\).
Use the double-angle identity for tangent: \(\tan(2\theta)= \frac{2\tan\theta}{1- \tan^2\theta}.\)
\(\tan(2\theta)= \frac{2\,\tan\theta}{1 - \tan^2\theta}.\)
Question 23
Prove that \(\sin(\theta)\,\cos(\theta) = \frac{1}{2}\,\sin(2\theta).\)
Compare the double-angle formula for sine: \(\sin(2\theta)= 2\sin\theta\,\cos\theta.\)
From \(\sin(2\theta)= 2\sin\theta\,\cos\theta \implies \sin\theta\,\cos\theta= \frac12\,\sin(2\theta).\)
Question 24
Simplify \(\sin(60^\circ)\cos(30^\circ) - \cos(60^\circ)\sin(30^\circ)\) using sum/difference identities.
\(\sin(a)\cos(b) - \cos(a)\sin(b) = \sin(a-b).\)
\(\sin(60^\circ)\cos(30^\circ) - \cos(60^\circ)\sin(30^\circ) = \sin\bigl(60^\circ - 30^\circ\bigr) = \sin(30^\circ) = \frac12.\)
Question 25
Use the product-to-sum identity to rewrite \(\sin(A)\cos(B)\).
\(\sin(A)\cos(B)= \frac12\bigl[\sin(A+B) + \sin(A-B)\bigr].\)
\(\sin(A)\cos(B)= \frac12\Bigl[\sin(A+B) + \sin(A-B)\Bigr].\)
Question 26
Solve the real-world problem: A pendulum swings such that its horizontal displacement is modeled by \(x(t)= 3\,\sin(2\pi\,t).\) Find how many oscillations occur in 5 seconds.
The period for \(\sin(k\,t)\) is \(\frac{2\pi}{k}.\)
The period is \(1\) second (since \(\frac{2\pi}{2\pi}=1\)). In 5 seconds, there are 5 complete oscillations.
Question 27
In simple harmonic motion modeled by \(y(t)= 4\cos(3t)\), find the amplitude and angular frequency.
In \(y(t)= A\cos(\omega t)\), amplitude \(= A\), angular frequency \(= \omega.\)
Amplitude \(= 4,\) angular frequency \(= 3\) (radians per second).
Question 28
Solve the equation: \(2\,\sin^2(x) - 1 = 0\) in the interval \([0, 2\pi]\).
Set \(\sin^2(x)= \frac12\) => \(\sin(x)= \pm \frac{\sqrt{2}}{2}\).
\(\sin(x)= \pm \frac{\sqrt{2}}{2} \implies x= \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}\) in \([0, 2\pi].\)
Question 29
Solve for \(x\) if \(\cos(x)= -\frac{\sqrt{3}}{2}\) and \(x\) in \([0, 2\pi]\).
\(\cos(x)= \frac{\sqrt{3}}{2}\) at \(x= \pm \frac{\pi}{6}\) from the principal angle. Negative means quadrant II or III.
\(x= \frac{5\pi}{6}, \frac{7\pi}{6}.\)
Question 30
Show that for an angle \(\theta\) in standard position, \(\tan(\theta)= \frac{y}{x}\), provided \(x\neq 0\), on the unit circle (scaled for radius \(r\)).
\(\tan(\theta)= \frac{\sin(\theta)}{\cos(\theta)}= \frac{(y/r)}{(x/r)}= \frac{y}{x}.\)
From \(\sin\theta= \frac{y}{r}\) and \(\cos\theta= \frac{x}{r}\) => \(\tan\theta= \frac{\sin\theta}{\cos\theta}= \frac{(y/r)}{(x/r)}= \frac{y}{x}.\)
Question 31
Find all solutions to \(3\,\tan(x)= \sqrt{3}\) in the interval \([0, 2\pi]\).
\(\tan(x)= \frac{\sqrt{3}}{3}= \frac{1}{\sqrt{3}}.\) This occurs at \(x= \frac{\pi}{6} + k\pi.\)
\(\tan(x)= \frac{1}{\sqrt{3}}\implies x= \frac{\pi}{6}, \frac{7\pi}{6}\) in \([0, 2\pi].\)
Question 32
Prove the identity: \(\sin(x) + \sin(y)= 2\,\sin\Bigl(\frac{x+y}{2}\Bigr)\,\cos\Bigl(\frac{x-y}{2}\Bigr).\)
Use sum-to-product formulas.
By sum-to-product, \(\sin(x)+ \sin(y) = 2 \sin\Bigl(\frac{x+y}{2}\Bigr)\cos\Bigl(\frac{x-y}{2}\Bigr).\)
Question 33
Convert the rectangular coordinates \((-2, 2)\) to polar form \((r, \theta)\).
\(r= \sqrt{x^2 + y^2}, \theta= \arctan\bigl(\frac{y}{x}\bigr)\) with quadrant consideration.
\(r= \sqrt{(-2)^2 + 2^2} = \sqrt{4 +4}= \sqrt{8}= 2\sqrt{2}.\) \(\theta= \arctan\Bigl(\frac{2}{-2}\Bigr)= \arctan(-1)= -\frac{\pi}{4},\) but the point is in quadrant II, so \(\theta= \frac{3\pi}{4}.\)
Question 34
Solve for \(x\) in \([0, 2\pi)\) if \(\sin(2x)= 1.\)
\(2x= \frac{\pi}{2} + 2k\pi\) or \(2x= \frac{3\pi}{2} +2k\pi.\) But \(\sin(\theta)=1\) only at \(\theta= \frac{\pi}{2}+ 2k\pi.\)
\(\sin(2x)=1 \implies 2x= \frac{\pi}{2}+ 2k\pi \implies x= \frac{\pi}{4} + k\pi.\) In \([0, 2\pi)\), \(x= \frac{\pi}{4}, \frac{5\pi}{4}.\)
Question 35
Use De Moivre’s Theorem to find \((\cos\theta + i \sin\theta)^3\).
\((r\,\mathrm{cis}(\theta))^n= r^n\,\mathrm{cis}(n\theta).\)
\((\cos\theta + i \sin\theta)^3= \cos(3\theta) + i\,\sin(3\theta).\)
Question 36
Represent the complex number \(z= 4\bigl(\cos\frac{\pi}{6} + i \sin\frac{\pi}{6}\bigr)\) in rectangular form \((x + i y)\).
\(x= r \cos(\theta),\; y= r \sin(\theta).\)
\(x= 4\cos\Bigl(\frac{\pi}{6}\Bigr)= 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3},\quad y= 4 \times \frac12= 2 \implies z= 2\sqrt{3} + 2i.\)
Question 37
Find the fourth roots of unity in complex form, i.e., solve \(z^4=1.\)
\(1= \cos(0)+ i\,\sin(0)\). Roots spaced by \(\frac{2\pi}{4}= \frac{\pi}{2}.\)
\(z= 1,\; i,\; -1,\; -i.\)
Question 38
In polar coordinates, \(r= 2\cos(\theta)\). Describe the curve in Cartesian form.
\(x= r\cos(\theta)\), so \(r= 2\cos(\theta)\) => \(r=2\frac{x}{r}\) => \(r^2= 2x.\)
\(r^2= x^2 + y^2 \implies x^2 + y^2= 2x \implies x^2 - 2x + y^2= 0 \implies (x-1)^2 + y^2= 1,\) a circle of radius 1 centered at \((1,0)\).
Question 39
Convert the parametric equations \(x= 3\cos(t),\; y= 3\sin(t)\) to Cartesian form.
Use \(x^2 + y^2= \dots\)
\(x^2 + y^2= (3\cos t)^2 + (3\sin t)^2= 9(\cos^2 t+ \sin^2 t)=9,\) so a circle of radius 3, center at the origin.
Question 40
Rewrite \(\cos\bigl(x+ \frac{\pi}{2}\bigr)\) in terms of sine.
Use shift identities: \(\cos(\theta+ \frac{\pi}{2})= -\sin(\theta)\).
\(\cos\Bigl(x+ \frac{\pi}{2}\Bigr)= -\sin(x).\)
Question 41
Prove that \(\sinh(x)= \frac{e^x- e^{-x}}{2}\) and \(\cosh(x)= \frac{e^x+ e^{-x}}{2}\) satisfy \(\cosh^2(x) - \sinh^2(x)=1.\)
Expand \(\cosh^2(x)- \sinh^2(x).\)
\(\cosh^2(x)- \sinh^2(x)= \Bigl(\frac{e^x + e^{-x}}{2}\Bigr)^2 - \Bigl(\frac{e^x - e^{-x}}{2}\Bigr)^2= 1.\)
Question 42
Evaluate \(\cosh(0)\) and \(\sinh(0)\).
Plug \(x=0\) into definitions of \(\cosh\) and \(\sinh\).
\(\cosh(0)= \frac{1+1}{2}=1,\; \sinh(0)= \frac{1-1}{2}=0.\)
Question 43
Solve the advanced trig equation: \(\sin(x)+ \sin(3x)=0\) for \(x\) in \([0, 2\pi].\)
Use sum-to-product: \(\sin(a)+ \sin(b)= 2\,\sin\bigl(\frac{a+b}{2}\bigr)\,\cos\bigl(\frac{a-b}{2}\bigr).\)
\(\sin(x)+ \sin(3x)= 2\,\sin(2x)\,\cos(x)=0.\) Either \(\sin(2x)=0\implies 2x= n\pi\implies x= \frac{n\pi}{2},\) or \(\cos(x)=0\implies x= \frac{\pi}{2}+ n\pi.\) Combine solutions in \([0,2\pi]: x=0,\frac{\pi}{2}, \pi,\frac{3\pi}{2}, 2\pi.\)
Question 44
Prove the identity: \(\sin(3\theta)=3\,\sin\theta - 4\,\sin^3\theta.\)
Use \(\sin(a+b)= \sin(a)\cos(b)+ \cos(a)\sin(b)\), then apply double-angle expansions.
\(\sin(3\theta)= \sin(2\theta +\theta)= \sin(2\theta)\cos\theta + \cos(2\theta)\sin\theta.\) Substitute \(\sin(2\theta)= 2\sin\theta\,\cos\theta,\;\cos(2\theta)= 1-2\sin^2\theta\). It simplifies to \(3\sin\theta - 4\sin^3\theta.\)
Question 45
If \(\tan\bigl(\frac{5\pi}{12}\bigr)= M\), express \(M\) in simplified radical form.
\(\frac{5\pi}{12}= \frac{\pi}{4} + \frac{\pi}{6}\). Use \(\tan(a+b)\) formula.
Let \(\frac{5\pi}{12}= \frac{\pi}{4}+ \frac{\pi}{6}\). Then \(\tan\bigl(\frac{5\pi}{12}\bigr)= \frac{\tan(\frac{\pi}{4}) + \tan(\frac{\pi}{6})}{1- \tan(\frac{\pi}{4})\,\tan(\frac{\pi}{6})} = \frac{1+ \frac{1}{\sqrt{3}}}{1- (1)\cdot \frac{1}{\sqrt{3}}}.\) That equals \(\frac{\frac{\sqrt{3}+1}{\sqrt{3}}}{1- \frac{1}{\sqrt{3}}} = \frac{(\sqrt{3}+1)/ \sqrt{3}}{\frac{\sqrt{3}-1}{\sqrt{3}}} = \frac{\sqrt{3}+1}{\sqrt{3}-1}.\) Multiply numerator & denominator by \((\sqrt{3}+1)\): \(\frac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)}= \frac{3+2\sqrt{3}+1}{3-1}= \frac{4+2\sqrt{3}}{2}= 2+ \sqrt{3}.\)
Question 46
Show that \(\cos(3\theta)= 4\,\cos^3\theta - 3\,\cos\theta.\)
Similar approach to the \(\sin(3\theta)\) identity, but for cosine.
\(\cos(3\theta)= \cos(2\theta +\theta)= \cos(2\theta)\cos\theta - \sin(2\theta)\sin\theta.\) Then \(\cos(2\theta)= \cos^2\theta - \sin^2\theta,\; \sin(2\theta)= 2\sin\theta\,\cos\theta.\) Expanding yields \(4\,\cos^3\theta - 3\,\cos\theta.\)
Question 47
Evaluate \(\bigl(\cos 36^\circ + i \sin 36^\circ\bigr)^5\) using De Moivre’s theorem and simplify the argument.
\((r \,\mathrm{cis}(\theta))^n= r^n\,\mathrm{cis}(n\theta).\) Here \(r=1,\; n=5,\; \theta=36^\circ \implies n\theta=180^\circ.\)
\(\bigl(\cos 36^\circ + i \sin 36^\circ\bigr)^5= \cos(180^\circ) + i \sin(180^\circ)= -1 + 0i= -1.\)
Question 48
In the complex plane, find all solutions to \(z^3= -8.\)
\(-8= 8 \,\mathrm{cis}(\pi).\) Then \(z= 2\,\mathrm{cis}\Bigl(\frac{\pi+2k\pi}{3}\Bigr).\)
Let \(-8= 8\bigl(\cos\pi + i \sin\pi\bigr).\) Then \(z= 2 \cos\Bigl(\frac{\pi+ 2k\pi}{3}\Bigr) + i \,\sin\Bigl(\frac{\pi+ 2k\pi}{3}\Bigr),\; k=0,1,2.\) Thus 3 distinct roots.
Question 49
Convert the polar equation \(r= 3\) to rectangular coordinates.
\(r^2= x^2 + y^2 \implies\) if \(r=3,\) then \(r^2=9.\)
\(x^2 + y^2= 9,\) a circle radius 3 centered at \((0,0).\)
Question 50
Prove that \(\cos\bigl(\frac{\pi}{2} -\theta\bigr)= \sin(\theta)\) using co-function identities.
Use complementary angles or the unit circle approach.
\(\cos\Bigl(\frac{\pi}{2}- \theta\Bigr)= \sin(\theta).\) On the unit circle, shifting an angle by \(\frac{\pi}{2}\) swaps sine and cosine.
Question 51
Prove the identity: \(\tan\bigl(\theta + \frac{\pi}{4}\bigr)= \frac{\tan\theta+1}{1 - \tan\theta}.\)
Use \(\tan(\alpha+ \beta)= \frac{\tan\alpha+ \tan\beta}{1- \tan\alpha\,\tan\beta}\). Here \(\tan(\frac{\pi}{4})=1.\)
\(\tan\Bigl(\theta + \frac{\pi}{4}\Bigr) = \frac{\tan\theta + \tan(\frac{\pi}{4})}{1 - \tan\theta\, \tan(\frac{\pi}{4})} = \frac{\tan\theta +1}{1 - \tan\theta}.\)
Question 52
Rewrite \(\cosh^2(x) - \sinh^2(x)=1\) purely in exponential form.
\(\cosh(x)= \frac{e^x+ e^{-x}}{2},\; \sinh(x)= \frac{e^x- e^{-x}}{2}.\)
\(\Bigl(\frac{e^x+ e^{-x}}{2}\Bigr)^2 - \Bigl(\frac{e^x- e^{-x}}{2}\Bigr)^2 = \frac{(e^{2x}+ 2 + e^{-2x}) - (e^{2x}-2 + e^{-2x})}{4} = \frac{4}{4}=1.\)
Question 53
Solve the advanced equation: \(2\,\sin(2x)= \sqrt{3} + \sin(2x)\), for \(x\in [0, 2\pi].\)
Isolate \(\sin(2x)\).
\(2\,\sin(2x)= \sqrt{3} + \sin(2x) \implies \sin(2x)= \sqrt{3}.\) But \(\sin(2x)\le1,\ \sqrt{3}\approx 1.732>1 \implies\) no real solution in \([0, 2\pi].\)
Question 54
Show that if \(\sin(x)= \cos(x)\), then \(x= \frac{\pi}{4}+ n\pi.\)
\(\sin(x)= \cos(x)\implies \tan(x)=1 \implies x= \frac{\pi}{4}+ n\pi.\)
\(\sin(x)= \cos(x)\implies \tan(x)=1 \implies x= \frac{\pi}{4}+ n\pi,\; n\in \mathbb{Z}.\)
Question 55
Let \(\sin A=\frac{1}{3}\) and \(A\) in quadrant I. Find \(\cos(2A)\).
Use \(\cos(2A)= 1- 2\sin^2(A).\)
\(\cos(2A)= 1- 2\Bigl(\frac{1}{3}\Bigr)^2= 1- \frac{2}{9}= \frac{7}{9}.\)
Question 56
Prove the half-angle identity: \(\sin^2\Bigl(\frac{\theta}{2}\Bigr)= \frac{1-\cos(\theta)}{2}.\)
Start with \(\cos\bigl(2 \cdot \frac{\theta}{2}\bigr)= \cos(\theta)= 1- 2\sin^2\bigl(\frac{\theta}{2}\bigr).\)
\(\cos(\theta)= 1- 2\sin^2\Bigl(\frac{\theta}{2}\Bigr) \implies \sin^2\Bigl(\frac{\theta}{2}\Bigr)= \frac{1- \cos(\theta)}{2}.\)
Question 57
Prove the identity: \(\tan(2\theta)= \frac{2\,\tan(\theta)}{1- \tan^2(\theta)}.\)
\(\tan(\alpha+ \beta)= \frac{\tan\alpha+ \tan\beta}{1- \tan\alpha\,\tan\beta},\) then set \(\alpha= \beta= \theta.\)
\(\tan(2\theta)= \tan(\theta+ \theta)= \frac{\tan\theta + \tan\theta}{1- \tan\theta\,\tan\theta} = \frac{2\,\tan\theta}{1- \tan^2\theta}.\)
Question 58
Solve the equation: \(3\,\cos(2x)= 2\) for \(x\) in \([0, 2\pi].\)
\(\cos(2x)= \frac{2}{3}\implies 2x= \arccos\bigl(\frac{2}{3}\bigr).\)
\(\cos(2x)= \frac{2}{3} \implies 2x= \pm\,\arccos\bigl(\tfrac{2}{3}\bigr)+ 2k\pi \implies x= \pm \tfrac12\,\arccos\bigl(\tfrac{2}{3}\bigr) + k\pi,\) find solutions in \([0,2\pi].\)
Question 59
Show that \(\sin(A)+ \sin(B)+ \sin(C)= 4\,\cos\Bigl(\frac{A-B}{2}\Bigr) \cos\Bigl(\frac{B-C}{2}\Bigr)\,\sin\Bigl(\frac{A+C}{2}\Bigr)\) if \(A+B+C= \pi\) (angles of a triangle).
Use sum-to-product expansions and the fact that \(A+B+C= \pi \implies C= \pi- A- B.\)
A known trig identity for angles of a triangle. One typical derivation uses sum-to-product on pairs of sines plus substituting \(C= \pi- A- B.\)
Question 60
Solve the system in terms of \(r, \theta\): \(x= r \cos\theta,\; y= r \sin\theta\) for \(x=2,\; y=2\sqrt{3}.\)
\(r= \sqrt{x^2 + y^2}.\; \theta= \arctan\bigl(\frac{y}{x}\bigr).\)
\(r= \sqrt{4+ 12}= \sqrt{16}= 4,\quad \theta= \arctan\Bigl(\frac{2\sqrt{3}}{2}\Bigr)= \arctan(\sqrt{3})= \frac{\pi}{3}.\)
Question 61
Let \(\sin\theta= \frac{2}{5}\), \(\theta\) in quadrant II. Find \(\cos\theta\).
\(\cos^2\theta= 1- \sin^2\theta \implies\cos\theta\) negative in quadrant II.
\(\cos\theta= -\sqrt{1- \Bigl(\frac{2}{5}\Bigr)^2} = -\sqrt{1- \frac{4}{25}} = -\sqrt{\frac{21}{25}} = -\frac{\sqrt{21}}{5}.\)
Question 62
Solve for \(x\) in \([0, 2\pi)\) if \(\tan^2 x -3= 0.\)
\(\tan^2 x= 3 \implies \tan x= \pm \sqrt{3}.\)
\(\tan x= \sqrt{3} \implies x= \frac{\pi}{3}, \frac{4\pi}{3};\quad \tan x= -\sqrt{3} \implies x= \frac{2\pi}{3}, \frac{5\pi}{3}.\)
Question 63
Given that \(\sin(\alpha)= \frac{4}{5}\), \(\alpha\) in quadrant I, and \(\cos(\beta)= \frac{12}{13}\), \(\beta\) in quadrant IV, find \(\sin(\alpha+ \beta).\)
Use \(\sin(\alpha+ \beta)= \sin\alpha \cos\beta + \cos\alpha \sin\beta.\)
\(\cos\alpha= \frac{3}{5},\; \beta\in IV \implies \sin\beta <0 \implies \sin\beta= -\frac{5}{13}.\) Then \(\sin(\alpha+ \beta)= \Bigl(\frac{4}{5}\Bigr)\Bigl(\frac{12}{13}\Bigr) + \Bigl(\frac{3}{5}\Bigr)\Bigl(-\frac{5}{13}\Bigr) = \frac{48}{65}- \frac{15}{65} = \frac{33}{65}.\)
Question 64
Prove that \(1+ \tan^2\theta= \sec^2\theta.\)
Divide \(\sin^2\theta+ \cos^2\theta=1\) by \(\cos^2\theta.\)
\(\sin^2\theta+ \cos^2\theta=1 \implies \frac{\sin^2\theta}{\cos^2\theta}+ \frac{\cos^2\theta}{\cos^2\theta}=1 \implies \tan^2\theta +1= \sec^2\theta.\)
Question 65
Prove that \(1+ \cot^2\theta= \csc^2\theta.\)
Divide \(\sin^2\theta+ \cos^2\theta=1\) by \(\sin^2\theta.\)
\(\sin^2\theta+ \cos^2\theta=1 \implies 1 + \frac{\cos^2\theta}{\sin^2\theta} = \frac{\sin^2\theta + \cos^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta}= \csc^2\theta,\) thus \(1 + \cot^2\theta= \csc^2\theta.\)
Question 66
Solve: \(2\,\sin(x)\,\cos(x)=1\) for \(x\in [0, 2\pi].\)
Use \(\sin(2x)= 2\,\sin(x)\,\cos(x).\)
\(2\,\sin(x)\,\cos(x)= \sin(2x)=1 \implies 2x= \frac{\pi}{2}+ 2k\pi \implies x= \frac{\pi}{4}+ k\pi.\) In \([0,2\pi]\), \(x= \frac{\pi}{4}, \frac{5\pi}{4}.\)
Question 67
If \(\cos(A)= \frac{4}{5}\) with \(A\) in quadrant IV, find \(\sin\bigl(\frac{A}{2}\bigr).\)
Use half-angle identity: \(\sin\bigl(\frac{A}{2}\bigr)= \pm \sqrt{\frac{1- \cos(A)}{2}}\). Determine sign from quadrant of \(\frac{A}{2}\).
Since \(A\) is in IV, \(\frac{A}{2}\) is in II (i.e. angle between \(\frac{\pi}{2}\) and \(\pi\)), so \(\sin(\frac{A}{2})\ge0.\) \[ \sin\Bigl(\frac{A}{2}\Bigr)= \sqrt{\frac{1- \cos(A)}{2}} = \sqrt{\frac{1- \frac{4}{5}}{2}} = \sqrt{\frac{\frac{1}{5}}{2}} = \sqrt{\frac{1}{10}} = \frac{1}{\sqrt{10}}. \]
Question 68
Let \(\tan(x)= 2.\) Find \(\sin(2x)\) in exact form, assuming \(x\) is in the first quadrant.
If \(\tan(x)= 2= \frac{2}{1},\) then opposite \(=2\), adjacent \(=1\) => hypotenuse \(= \sqrt{5}\) => \(\sin(x)= \frac{2}{\sqrt{5}}, \cos(x)= \frac{1}{\sqrt{5}}.\)
\(\sin(2x)= 2\,\sin(x)\,\cos(x)= 2 \Bigl(\frac{2}{\sqrt{5}}\Bigr)\Bigl(\frac{1}{\sqrt{5}}\Bigr)= \frac{4}{5}.\)
Question 69
Solve for \(\theta\) if \(\cos\theta= 0.2\) and \(\theta\in [0, 2\pi].\)
\(\theta= \arccos(0.2)= \dots\)
Numerically, \(\theta\approx \arccos(0.2)= 1.369438\ldots\). The second solution is \(2\pi -1.369438= 4.913747\ldots.\)
Question 70
Let \(\sec\theta= \frac{5}{4},\) \(\theta\) in quadrant I. Find \(\tan\theta.\)
\(\sec\theta= \frac{1}{\cos\theta}\implies \cos\theta= \frac{4}{5}\). Then \(\sin\theta= \frac{3}{5}.\) \(\tan\theta= \frac{\sin\theta}{\cos\theta}= \frac{3/5}{4/5}= \frac{3}{4}.\)
\(\tan\theta= \frac{3}{4}.\)
Question 71
Prove the identity: \(\cos(A)+ \cos(B)= 2\,\cos\Bigl(\frac{A+B}{2}\Bigr)\,\cos\Bigl(\frac{A-B}{2}\Bigr).\)
Use sum-to-product expansions for \(\cos.\)
\(\cos(A)+ \cos(B)= 2\,\cos\Bigl(\frac{A+B}{2}\Bigr)\,\cos\Bigl(\frac{A-B}{2}\Bigr).\)
Question 72
Simplify \(\sin(\pi - x)\) and \(\cos(\pi - x)\).
Use reference angles: \(\sin(\pi - x)= \sin(x),\; \cos(\pi - x)= -\cos(x).\)
\(\sin(\pi - x)= \sin(x),\quad \cos(\pi - x)= -\cos(x).\)
Question 73
Show that the polar equation \(r= \theta\) is not a function in Cartesian form for all real \(\theta\) (explain why).
\(r= \theta\) in polar form spirals outward. Converting to \(x,y\) is complicated and not single-valued in \(x\) or \(y\).
The curve is a spiral passing multiple times over the same region, giving multiple \(y\)-values for a single \(x\). Hence it does not represent a single-valued function \(y(x)\).
Question 74
Suppose parametric equations \(x= \cos(t)\), \(y= 2\sin(t)\). Eliminate \(t\) to find the Cartesian equation.
Use \(x^2 + \bigl(\frac{y}{2}\bigr)^2= \cos^2(t)+ \sin^2(t)=1.\)
\(\frac{x^2}{1}+ \frac{y^2}{4}=1\). It's an ellipse.
Question 75
Prove the identity: \(\sin(x)+ \sin(y)= 2\,\sin\Bigl(\frac{x+y}{2}\Bigr)\cos\Bigl(\frac{x-y}{2}\Bigr).\)
This is a standard sum-to-product identity for sine.
\(\sin(x)+ \sin(y)= 2\,\sin\Bigl(\frac{x+y}{2}\Bigr)\,\cos\Bigl(\frac{x-y}{2}\Bigr).\)
Question 76
Suppose a triangle with sides \(a,b,c\) has angles \(A,B,C\). Prove that \(a : b : c= \sin(A) : \sin(B) : \sin(C).\)
Use the Law of Sines: \(\frac{a}{\sin(A)}= \frac{b}{\sin(B)}= \frac{c}{\sin(C)}= 2R\) (the circumradius).
By the Law of Sines, \(\frac{a}{\sin(A)}= \frac{b}{\sin(B)}= \frac{c}{\sin(C)}\implies a : b : c= \sin(A) : \sin(B) : \sin(C).\)
Question 77
Prove the identity for hyperbolic sine addition: \(\sinh(x+y)= \sinh(x)\cosh(y)+ \cosh(x)\sinh(y).\)
Use definitions: \(\sinh(x)= \frac{e^x- e^{-x}}{2}, \cosh(x)= \frac{e^x+ e^{-x}}{2}\).
Follows from \(\sinh(x+y)= \frac{e^{x+y}- e^{-(x+y)}}{2}= \frac{e^x e^y - e^{-x} e^{-y}}{2}\). Distribute and regroup to get \(\sinh(x)\cosh(y)+ \cosh(x)\sinh(y).\)
Question 78
Prove the identity for hyperbolic cosine addition: \(\cosh(x+y)= \cosh(x)\cosh(y)+ \sinh(x)\sinh(y).\)
Similar approach to the previous: use expansions of \(e^x, e^y\).
\(\cosh(x+y)= \frac{e^{x+y}+ e^{-(x+y)}}{2}= \frac{e^x e^y + e^{-x} e^{-y}}{2}\). Factoring yields \(\cosh(x)\cosh(y)+ \sinh(x)\sinh(y).\)
Question 79
Find the exact values of \(\theta\) in \([0, 2\pi)\) satisfying \(\sin(\theta)= -\frac{1}{2}.\)
\(\sin(\theta)= -\tfrac12\) => reference angle \(30^\circ\), negative in quadrants III, IV.
\(\theta= \frac{7\pi}{6}, \frac{11\pi}{6}.\)
Question 80
Prove that if \(\cos\theta=0\), then \(\sin\theta= \pm1\) and \(\theta= \frac{\pi}{2}+ k\pi.\)
\(\cos\theta=0 \implies\) on the unit circle, \(x=0 \implies y= \pm1\implies \sin\theta= \pm1.\)
\(\cos\theta=0 \implies (x,y)= (0,\pm1)\implies \sin\theta= \pm1\implies \theta= \frac{\pi}{2}+ k\pi.\)
Question 81
Given \(\cos(\alpha)= \frac{8}{17}\), \(\alpha\) in quadrant I, find \(\sin(3\alpha)\) using the triple-angle identity.
\(\sin(3\alpha)= 3\,\sin\alpha - 4\,\sin^3\alpha.\) Need \(\sin\alpha= \sqrt{1- \cos^2\alpha}.\)
\(\sin\alpha= \sqrt{1- \Bigl(\frac{8}{17}\Bigr)^2} = \sqrt{1- \frac{64}{289}} = \sqrt{\frac{225}{289}} = \frac{15}{17}.\) Then \(\sin(3\alpha)= 3\Bigl(\frac{15}{17}\Bigr) -4 \Bigl(\frac{15}{17}\Bigr)^3 = \frac{45}{17} - 4 \cdot \frac{3375}{4913}\) \(\frac{45}{17}= \frac{45 \cdot 289}{17 \cdot 289}= \frac{13005}{4913}, \quad 4 \cdot \frac{3375}{4913}= \frac{13500}{4913}.\) So \(\sin(3\alpha)= \frac{13005}{4913} - \frac{13500}{4913}= \frac{-495}{4913}.\)
Question 82
If \(\cos(2\theta)= \frac{1}{2}\), find \(\sin\theta.\) Assume \(\theta\) in the first quadrant.
\(\cos(2\theta)= 1- 2\sin^2\theta => \frac12= 1- 2\sin^2\theta.\)
\(\cos(2\theta)= \frac12 \implies \frac12= 1- 2\sin^2\theta \implies \sin^2\theta= \frac14 \implies \sin\theta= \frac12\) (taking positive root for quadrant I).
Question 83
Solve: \(\sin(x)= \cos(x)\) in \([0, 2\pi].\)
\(\tan(x)=1 \implies x= \frac{\pi}{4}+ k\pi.\)
In \([0,2\pi], x= \frac{\pi}{4}, \frac{5\pi}{4}.\)
Question 84
Simplify the expression \(\sin(\theta)\,\sec(\theta)\).
\(\sec(\theta)= \frac{1}{\cos(\theta)}.\)
\(\sin(\theta)\cdot \sec(\theta)= \frac{\sin(\theta)}{\cos(\theta)}= \tan(\theta).\)
Question 85
Evaluate \(\tan\bigl(\frac{\pi}{8}\bigr)\,\tan\bigl(\frac{3\pi}{8}\bigr)\,\tan\bigl(\frac{5\pi}{8}\bigr)\,\tan\bigl(\frac{7\pi}{8}\bigr)\).
The product of tangents equally spaced often yields 1 or -1. Check the sign using quadrant considerations.
The product equals \(1\) (a known identity for tangent of equally spaced angles).
Question 86
Prove that \(\tan(A)+ \tan(B)+ \tan(C)= \tan(A)\,\tan(B)\,\tan(C)\) if \(A+B+C= \pi\) (angles of a triangle).
Use \(\tan(A+B+C)= \tan(\pi)= 0\). Expand via \(\tan(A+B+C)\) formula => the identity emerges.
From the tangent addition formula, \(\tan(A+B+C)= \frac{\tan A + \tan B+ \tan C - \tan A\tan B\tan C}{1- (\dots)}= \tan(\pi)=0.\) The numerator must be zero, giving \(\tan A+ \tan B+ \tan C= \tan A\,\tan B\,\tan C.\)
Question 87
Show that if \(\cos\theta= -1\), then \(\theta= \pi+ 2k\pi\) and \(\sin\theta=0.\)
On the unit circle, \(\cos\theta= -1\) => point is \((-1,0)\) => angle \(\theta= \pi.\)
\(\cos\theta= -1\implies \theta= \pi+ 2k\pi.\) At that angle, \(\sin\theta=0.\)
Question 88
Evaluate the limit (no calculus required!): \(\lim_{\theta\to0} \frac{\sin\theta}{\theta}.\)
Though typically shown via calculus, a geometric argument or infinite series approach can be used. The limit is 1.
The limit is \(1\) (classic result).
Question 89
Prove that if \(\sin A= \sin B\), then \(A= B+ 2n\pi\) or \(A= \pi - B +2n\pi.\)
Use unit circle symmetry: \(\sin\theta\) has the same value at angles \(\theta\) and \(\pi- \theta\).
The general solutions for \(\sin(A)= \sin(B)\) are \(A= B+ 2n\pi\) or \(A= \pi- B+ 2n\pi.\)
Question 90
Solve: \(\cot(x)= \sqrt{3}\) for \(x\) in \([0, 2\pi].\)
\(\cot(x)= \frac{1}{\tan(x)}= \sqrt{3}\implies \tan(x)= \frac{1}{\sqrt{3}}.\)
\(\tan(x)= \frac{1}{\sqrt{3}}\implies x= \frac{\pi}{6}+ k\pi.\) In \([0, 2\pi], x= \frac{\pi}{6}, \frac{7\pi}{6}.\)
Question 91
If \(\sin(x)= -\frac{2}{3}\) and \(x\) in quadrant IV, find \(\cos(x)\).
\(\cos^2x= 1- \sin^2x\implies \cos x>0\) in quadrant IV.
\(\cos(x)= \sqrt{1- \Bigl(-\frac{2}{3}\Bigr)^2}= \sqrt{1- \frac{4}{9}}= \sqrt{\frac{5}{9}}= \frac{\sqrt{5}}{3}>0.\)
Question 92
Evaluate \(\sin\Bigl(\frac{\pi}{12}\Bigr)\) using the difference formula \(\frac{\pi}{12}= \frac{\pi}{4}- \frac{\pi}{6}\).
\(\sin(a- b)= \sin(a)\cos(b) - \cos(a)\sin(b).\)
Using \(\frac{\pi}{4}- \frac{\pi}{6}\): \(\sin\Bigl(\frac{\pi}{12}\Bigr)= \sin\Bigl(\frac{\pi}{4}\Bigr)\cos\Bigl(\frac{\pi}{6}\Bigr)- \cos\Bigl(\frac{\pi}{4}\Bigr)\sin\Bigl(\frac{\pi}{6}\Bigr) = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\cdot \frac12 = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6}- \sqrt{2}}{4}.\)
Question 93
Prove that \(\sin^2(\theta)= \frac{1- \cos(2\theta)}{2}.\)
This is the half-angle identity rearranged from \(\cos(2\theta)= 1- 2\sin^2\theta.\)
\(\cos(2\theta)= 1- 2\sin^2\theta \implies 2\sin^2\theta= 1- \cos(2\theta) \implies \sin^2(\theta)= \frac{1- \cos(2\theta)}{2}.\)
Question 94
Simplify \(\frac{\sin(x)}{\cos(x)} \cdot \frac{\cos(x)}{\sin(x)}.\)
Observe the cancellation.
The expression simplifies to \(1.\)
Question 95
Solve the trigonometric equation in \([0, 2\pi]\): \(\sin(x)= -\frac{\sqrt{2}}{2}.\)
\(\sin(\theta)= -\frac{\sqrt{2}}{2}\) => reference angle \(\frac{\pi}{4}\), negative in quadrants III, IV.
\(x= \frac{5\pi}{4}, \frac{7\pi}{4}.\)
Question 96
If \(\sin(\theta)= 0.6,\; \cos(\theta)= 0.8,\) find \(\tan(2\theta)\).
\(\tan(2\theta)= \frac{2\,\tan\theta}{1- \tan^2\theta}.\) First find \(\tan\theta= \frac{0.6}{0.8}= 0.75.\)
\(\tan(\theta)= \frac{0.6}{0.8}= \frac{3}{4}.\) Then \(\tan(2\theta)= \frac{2\cdot \frac{3}{4}}{1- \Bigl(\frac{3}{4}\Bigr)^2} = \frac{\frac{3}{2}}{1- \frac{9}{16}} = \frac{\frac{3}{2}}{\frac{7}{16}} = \frac{3}{2}\cdot \frac{16}{7} = \frac{24}{7}.\)
Question 97
Let \(\sin\theta= \frac{1}{7}, \theta\) in quadrant I. Find \(\cos(3\theta)\) using triple-angle identities.
\(\cos(3\theta)= 4\cos^3\theta - 3\cos\theta.\) Need \(\cos\theta= \sqrt{1- \sin^2\theta}.\)
\(\sin\theta= \frac{1}{7}\implies \cos\theta= \sqrt{1- \Bigl(\frac{1}{7}\Bigr)^2}= \sqrt{\frac{48}{49}}= \frac{4\sqrt{3}}{7}.\) Then \(\cos(3\theta)= 4\Bigl(\frac{4\sqrt{3}}{7}\Bigr)^3 - 3\Bigl(\frac{4\sqrt{3}}{7}\Bigr) = 4 \cdot \frac{64\cdot 3\sqrt{3}}{343} - \frac{12\sqrt{3}}{7}.\) The first term: \(4 \times \frac{192\sqrt{3}}{343}= \frac{768\sqrt{3}}{343}.\) The second: \(\frac{12\sqrt{3}}{7}= \frac{12\sqrt{3}\cdot49}{7\cdot49}= \frac{588\sqrt{3}}{343}.\) So \(\cos(3\theta)= \frac{768\sqrt{3}- 588\sqrt{3}}{343} = \frac{180\sqrt{3}}{343}.\)
Question 98
Solve for \(z\) if \(\sec(x)= -2,\; x\in [0, 2\pi].\)
\(\sec(x)= -2 \implies \cos(x)= -\frac{1}{2}.\) Negative in quadrants II, III.
\(\cos(x)= -\frac12 \implies x= \frac{2\pi}{3}, \frac{4\pi}{3}.\)
Question 99
If \(\tan(A)= \frac{1}{3}\) and \(\tan(B)= \frac{1}{2}\), find \(\tan(A+B)\).
Use \(\tan(A+B)= \frac{\tan A + \tan B}{1- \tan A\,\tan B}.\)
\(\tan(A+B)= \frac{\frac{1}{3} + \frac{1}{2}}{1- \Bigl(\frac{1}{3}\Bigr)\Bigl(\frac{1}{2}\Bigr)} = \frac{\frac{5}{6}}{1- \frac{1}{6}} = \frac{\frac{5}{6}}{\frac{5}{6}} = 1.\)
Question 100
Prove the advanced identity: \(\sin(4x)= 2\,\sin(2x)\,\cos(2x)= 8\,\sin(x)\,\cos(x)\,\cos(2x).\)
Start with \(\sin(4x)= \sin\bigl(2(2x)\bigr)= 2\,\sin(2x)\,\cos(2x).\) Then \(\sin(2x)= 2\,\sin(x)\,\cos(x).\)
\(\sin(4x)= 2\,\sin(2x)\,\cos(2x)= 2\Bigl(2\,\sin(x)\,\cos(x)\Bigr)\cos(2x)= 8\,\sin(x)\,\cos(x)\,\cos(2x).\)