🧭 Level 3: Trigonometry Navigator

Q121. Solve the equation \( 2\sin(x) - 1 = 0 \) for \( x \) in the interval \( [0, 2\pi) \).

Q122. Find the general solution for \( \cos(x) = \frac{\sqrt{3}}{2} \).

Q123. Solve for \( \tan(x) = -1 \) in the interval \( [0, \pi) \).

Q124. Find all solutions for \( 2\sin^2(x) - \sin(x) - 1 = 0 \) in \( [0, 2\pi) \).

Q125. Solve \( \cos(2x) = \frac{1}{2} \) for \( x \) in \( [0, \pi) \).

Q126. Find the solutions to \( \sin(3x) = 0 \) in \( [0, 2\pi) \).

Q127. Solve \( 2\cos^2(x) - 3\cos(x) + 1 = 0 \) for \( x \) in \( [0, 2\pi) \).

Q128. Find the solution(s) to \( \sin(x) = \cos(x) \) in \( [0, 2\pi) \).

Q129. Solve \( \tan^2(x) = 1 \) for \( x \) in \( [0, 2\pi) \).

Q130. Find the general solution of \( \sin(x) = -\frac{1}{2} \).

Q131. Describe the transformation from \( y = \cos(x) \) to \( y = \cos(x) + 2 \).

Q132. Identify the amplitude of \( y = -3\sin(x) \).

Q133. Determine the period of \( y = \sin(2x) \).

Q134. Find the phase shift of \( y = \cos(x - \frac{\pi}{3}) \).

Q135. Identify the vertical shift of \( y = 2\sin(x) - 1 \).

Q136. What is the value of \( \arcsin(\frac{\sqrt{3}}{2}) \) in radians?

Q137. Evaluate \( \arccos(-\frac{1}{2}) \) in radians.

Q138. What is the domain of \( y = \arcsin(x) \)?

Q139. Determine the range of \( y = \arccos(x) \).

Q140. Evaluate \( \arctan(-1) \) in radians.

Q141. Use the sum formula to find the exact value of \( \cos(75^\circ) \).

Q142. Apply the difference formula to simplify \( \sin(x - \frac{\pi}{2}) \).

Q143. Use the double angle formula to find \( \sin(2x) \) if \( \sin(x) = \frac{3}{5} \) and \( \cos(x) = \frac{4}{5} \).

Q144. Simplify using sum-to-product formulas: \( \sin(3x) + \sin(x) \).

Q145. Prove the identity: \( \cos(2x) = \cos^2(x) - \sin^2(x) \). This is the:

Q146. In triangle ABC, if \( a = 8 \), \( b = 7 \), and \( \angle C = 60^\circ \), use the Law of Cosines to find side \( c \).

Q147. In triangle XYZ, \( \angle X = 30^\circ \), \( \angle Y = 45^\circ \), and \( x = 10 \). Use the Law of Sines to find side \( y \).

Q148. Given triangle PQR with \( p = 5 \), \( q = 7 \), \( r = 8 \), find \( \cos(R) \) using the Law of Cosines.

Q149. In triangle DEF, \( d = 15 \), \( e = 12 \), and \( \angle D = 60^\circ \). How many triangles can be formed (ambiguous case)?

Q150. Given triangle ABC with \( \angle A = 22^\circ \), \( \angle B = 95^\circ \), and \( a = 15 \). Find side \( b \) using Law of Sines.

Q151. A surveyor needs to find the distance across a river. From point A on one bank, they sight a point B on the opposite bank. They then walk 50m downstream to point C and measure \( \angle ACB = 40^\circ \) and \( \angle CAB = 90^\circ \). Find the distance AB (width of the river).

Q152. Two ships leave a port at the same time. Ship A sails at 20 mph in the direction N30°E, and Ship B sails at 25 mph in the direction S60°E. How far apart are the ships after 2 hours?

Q153. Find the area of triangle ABC if \( a = 10 \), \( b = 12 \), and \( \angle C = 30^\circ \).

Q154. Calculate the area of triangle PQR with sides \( p = 13 \), \( q = 14 \), and \( r = 15 \) using Heron's formula.

Q155. The area of triangle XYZ is \( 24 \) sq cm, and sides \( x = 6 \) cm and \( y = 8 \) cm. Find \( \sin(Z) \).

Q156. Solve \( 2\sin(x) + \sqrt{3} = 0 \) for \( x \) in \( [0, 2\pi) \).

Q157. Find the general solution for \( \tan(x) = \sqrt{3} \).

Q158. Solve for \( \cos(x) = 0 \) in the interval \( [0, 2\pi) \).

Q159. Find all solutions for \( \tan^2(x) - 3 = 0 \) in \( [0, 2\pi) \).

Q160. Solve \( 2\cos(2x) - 1 = 0 \) for \( x \) in \( [0, \pi) \).

Q161. Find the solutions to \( \cos(3x) = -1 \) in \( [0, \pi) \).

Q162. Solve \( 2\sin^2(x) + 3\sin(x) + 1 = 0 \) for \( x \) in \( [0, 2\pi) \).

Q163. Find the solution(s) to \( \sin(2x) = \sin(x) \) in \( [0, 2\pi) \).

Q164. Solve \( \cos^2(x) = \cos(x) \) for \( x \) in \( [0, 2\pi) \).

Q165. Find the general solution of \( \cos(x) = -\frac{\sqrt{2}}{2} \).

Q166. Describe the transformation from \( y = \sin(x) \) to \( y = \sin(x - \frac{\pi}{4}) \).

Q167. Identify the amplitude of \( y = 0.5\cos(x) \).

Q168. Determine the period of \( y = \cos(\frac{1}{2}x) \).

Q169. Find the phase shift of \( y = 3\sin(2x + \pi) \).

Q170. Identify the vertical shift of \( y = -\cos(x) + 3 \).

Q171. What is the value of \( \arccos(1) \) in radians?

Q172. Evaluate \( \arcsin(-\frac{\sqrt{2}}{2}) \) in radians.

Q173. What is the domain of \( y = \arccos(x) \)?

Q174. Determine the range of \( y = \arctan(x) \).

Q175. Evaluate \( \arctan(\sqrt{3}) \) in radians.

Q176. Use the sum formula to find the exact value of \( \sin(105^\circ) \).

Q177. Apply the difference formula to simplify \( \cos(x + \frac{\pi}{2}) \).

Q178. Use the double angle formula to find \( \cos(2x) \) if \( \cos(x) = \frac{1}{3} \).

Q179. Simplify using product-to-sum formulas: \( 2\cos(3x)\sin(x) \).

Q180. Prove the identity: \( \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} \). This is the:

Q181. In triangle ABC, if \( b = 10 \), \( c = 5 \), and \( \angle A = 45^\circ \), use the Law of Cosines to find side \( a \).

Q182. In triangle KLM, \( \angle K = 60^\circ \), \( \angle L = 60^\circ \), and \( k = 12 \). Use the Law of Sines to find side \( l \).

Q183. Given triangle RST with \( r = 10 \), \( s = 16 \), \( t = 14 \), find \( \cos(S) \) using the Law of Cosines.

Q184. In triangle UVW, \( u = 20 \), \( v = 10 \), and \( \angle U = 30^\circ \). How many triangles can be formed (ambiguous case)?

Q185. Given triangle DEF with \( \angle D = 35^\circ \), \( \angle E = 65^\circ \), and \( f = 20 \). Find side \( d \) using Law of Sines.

Q186. A plane flies on a bearing of 150° for 150 km and then turns and flies on a bearing of 60° for 100 km. Find the straight-line distance from the starting point to the final point.

Q187. Two boats leave a dock at the same time. One boat travels due south at 15 mph. The other travels S70°E at 20 mph. How far apart are the boats after 3 hours?

Q188. Find the area of triangle DEF if \( d = 15 \), \( f = 20 \), and \( \angle E = 60^\circ \).

Q189. Calculate the area of triangle ABC with sides \( a = 24 \), \( b = 26 \), and \( c = 10 \) using Heron's formula.

Q190. The area of triangle RST is \( 48 \) sq cm, and sides \( r = 8 \) cm and \( t = 12 \) cm. Find \( \sin(S) \).

Q191. Solve \( 2\cos(x) + 1 = 0 \) for \( x \) in \( [0, 2\pi) \).

Q192. Find the general solution for \( \sin(x) = \frac{\sqrt{2}}{2} \).

Q193. Solve for \( \tan(x) = 0 \) in the interval \( [0, 2\pi) \).

Q194. Find all solutions for \( \cos^2(x) - \cos(x) = 0 \) in \( [0, 2\pi) \).

Q195. Solve \( \sin(2x) = 1 \) for \( x \) in \( [0, \pi) \).

Q196. Find the solutions to \( \tan(2x) = 0 \) in \( [0, \pi) \).

Q197. Solve \( 2\cos^2(x) + \cos(x) - 1 = 0 \) for \( x \) in \( [0, 2\pi) \).

Q198. Find the solution(s) to \( \tan(x) = -\sqrt{3} \) in \( [0, 2\pi) \).

Q199. Solve \( \tan^2(x) = 3 \) for \( x \) in \( [0, 2\pi) \).

Q200. Find the general solution of \( \tan(x) = 1 \).