100 Advanced Trigonometry Questions (Hints Only)

Approx. Difficulty: 8/10 — No final answers provided.

Question 1
Prove that for any integer \(n\), \[ \sin\bigl((2n+1)x\bigr) \;=\; \sin x \; U_{2n}\bigl(\cos x\bigr), \] where \(U_{2n}\) is the Chebyshev polynomial of the second kind.
Question 2
In a triangle with angles \(A,B,C\), prove: \[ \tan\left(\frac{A}{2}\right)\tan\left(\frac{B}{2}\right) \;+\; \tan\left(\frac{B}{2}\right)\tan\left(\frac{C}{2}\right) \;+\; \tan\left(\frac{C}{2}\right)\tan\left(\frac{A}{2}\right) \;=\; 1. \]
Question 3
Let \(\alpha+\beta+\gamma=\pi\). Prove: \[ \cot \alpha + \cot \beta + \cot \gamma \;=\; \cot \alpha \;\cot \beta \;\cot \gamma. \]
Question 4
For \(x\in \bigl(0,\tfrac{\pi}{2}\bigr)\), prove \(\sin x \;\le\; \frac{x}{\sqrt{1+\frac{x^2}{6}}}\) without using derivatives.
Question 5
Show that \(\cos 20^\circ \;+\; \cos 40^\circ \;+\; \cos 80^\circ \;=\; \tfrac{1}{2}.\)
Question 6
In a triangle \(ABC\) with angles \(A,B,C\), prove \(\sin A + \sin B + \sin C \;\le\; \frac{3\sqrt{3}}{2}.\)
Question 7
Prove that \[ \tan(3\theta) \;=\; \frac{3\tan\theta \;-\; \tan^3\theta}{1 \;-\; 3\tan^2\theta}. \]
Question 8
Show that \[ \prod_{k=1}^{n-1} \sin\!\Bigl(\tfrac{k\pi}{n}\Bigr) \;=\; \frac{n}{2^{\,n-1}}. \]
Question 9
If \(x,y,z\) are angles of a triangle, prove \(\sin 2x + \sin 2y + \sin 2z \;=\; 4\sin x\sin y\sin z.\)
Question 10
Show \[ \sin^6 \theta + \cos^6 \theta \;\ge\; \tfrac{3}{8} \quad\text{for all real }\theta. \]
Question 11
In a triangle \(ABC\), prove \(\cot A + \cot B + \cot C \;\le\; \frac{R}{r}\), where \(R\) is the circumradius and \(r\) is the inradius.
Question 12
Evaluate in closed form: \[ \sum_{k=1}^{n} (-1)^{k-1}\cos(2k\,x). \]
Question 13
Let \(\alpha,\beta\in\bigl(0,\tfrac{\pi}{2}\bigr)\). Prove \(\sin(\alpha+\beta) + \sin(\alpha-\beta) \;\ge\; 2\sin\alpha\cos\beta.\)
Question 14
If \(0 < x < \tfrac{\pi}{2}\), prove \(\cot x > 1 + \frac{x}{\pi-2x}\).
Question 15
Prove \(\cos^3 A + \cos^3 B + \cos^3 C \;\le\; \tfrac{3}{4}\) for acute angles \(A,B,C\) with \(A+B+C=\pi\).
Question 16
Show \[ \sin\bigl(2x\bigr)\sin\bigl(4x\bigr)\sin\bigl(6x\bigr) \;=\;\frac{\sin(6x)-3\,\sin(2x)+4\,\sin^3(2x)}{4}, \] assuming \(\sin x \neq 0\).
Question 17
In a triangle \(ABC\), let sides be \(a,b,c\). Prove \(\frac{a+b}{a+c} = \frac{\sin\bigl(\tfrac{A+B}{2}\bigr)}{\sin\bigl(\tfrac{A+C}{2}\bigr)}.\)
Question 18
Prove or disprove: If \(x+y+z=\pi\), then \(\csc^2 x + \csc^2 y + \csc^2 z \;\ge\; 4.\)
Question 19
Prove that \[ \sin(20^\circ)\,\sin(40^\circ)\,\sin(60^\circ)\,\sin(80^\circ) \;=\; \frac{3\sqrt{3}}{16}. \]
Question 20
Let \(f(\theta)=\sin^6\theta+\cos^6\theta\). Show \(\min f(\theta)=\tfrac{3}{4}\) and \(\max f(\theta)=1.\)
Question 21
In \(\triangle ABC\) with sides \(a,b,c\), prove \(\frac{a+b}{a+c} = \frac{\tan\bigl(\tfrac{B}{2}\bigr)}{\tan\bigl(\tfrac{C}{2}\bigr)}.\)
Question 22
Show \(\sin(3x)+\sin(5x)+\sin(7x) = \sin x\,[\,4\cos(3x)+4\cos(5x)\,].\)
Question 23
Prove \[ \cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7} = \frac{1}{2}. \]
Question 24
Evaluate \(\displaystyle \prod_{k=1}^{n-1} \Bigl(1+\tan^2\!\bigl(\tfrac{k\pi}{n}\bigr)\Bigr)\).
Question 25
Let \(\alpha,\beta,\gamma\) be angles in a triangle. Prove \(\tan^2\alpha + \tan^2\beta + \tan^2\gamma \;\ge\; \tan\alpha\,\tan\beta + \tan\beta\,\tan\gamma + \tan\gamma\,\tan\alpha.\)
Question 26
Show that the Chebyshev polynomial of the first kind \(T_n(x)=\cos(n\arccos x)\) satisfies \[ T_n(x) = 2x\,T_{n-1}(x) - T_{n-2}(x), \] with \(T_0(x)=1,\, T_1(x)=x\).
Question 27
Suppose \(ab+bc+ca=1\) for \(a,b,c>0\). Prove \(\sqrt{\arctan a} + \sqrt{\arctan b} + \sqrt{\arctan c} \;\le\; \frac{3\sqrt{\pi}}{4}.\)
Question 28
Prove \(\sin^2\theta + \sin^2(2\theta) + \sin^2(3\theta) \;\ge\; \frac{3}{4}\) for all \(\theta\).
Question 29
Show \(\sin x\;\sin 2x\;\sin 3x = \frac{\sin 3x \;-\; 3\sin x \;+\; 4\sin^3 x}{4}.\)
Question 30
In a convex pentagon \(ABCDE\) with \(AB=BC=CD=DE=EA\) and \(\angle ABC=\angle CDE=120^\circ\), prove \(\angle ACE=120^\circ\).
Question 31
Prove \[ \sum_{k=1}^{n} \cos\Bigl(k-\tfrac12\Bigr)x = \frac{\sin(nx)}{2\sin\bigl(\tfrac{x}{2}\bigr)} - \tfrac12. \]
Question 32
If \(|z|=1\), investigate whether \(\bigl|1 + z + z^2 + \dots + z^n\bigr| \ge 1\) always holds. Prove or provide a counterexample.
Question 33
Show that \(\sin x \;\ge\; \frac{2x}{\pi}\) for \(x\in\bigl[0,\frac{\pi}{2}\bigr]\) (no calculus approach).
Question 34
In \(\triangle ABC\), let \(I\) be the incenter with inradius \(r\). Prove \(AI = \frac{r}{\sin(\tfrac{A}{2})}\).
Question 35
Show \(\sin^4 x + \cos^4 x + \sin^4(2x) + \cos^4(2x) \;\ge\; 2.\)
Question 36
Let \(\alpha+\beta+\gamma=\pi\). Prove \(\sin 2\alpha+\sin 2\beta+\sin 2\gamma \;\le\; \tfrac{3\sqrt{3}}{2}.\)
Question 37
If \(0 2.\)
Question 38
Prove \(\displaystyle \prod_{k=1}^{n-1} \sin\Bigl(\frac{k\pi}{n}\Bigr) = \frac{n}{2^{\,n-1}}\) for integer \(n>1\). (This is a classic result; re-verify.)
Question 39
In \(\triangle ABC\), let \(O\) be circumcenter, \(H\) be orthocenter, and let \(r\) be the circumradius. Prove \[ OH^2 = 9r^2 - (a^2 + b^2 + c^2). \]
Question 40
Show \(\sum_{k=1}^{n-1} \csc^2\Bigl(\frac{k\pi}{n}\Bigr) = \frac{n^2-1}{3}.\)
Question 41
Let \(x,y,z\) be angles of a triangle. Prove \(\cot x + \cot y + \cot z \;\ge\; \sqrt{\cot x\,\cot y + \cot y\,\cot z + \cot z\,\cot x}\).
Question 42
Show \(\cos \tfrac{\pi}{9} - \cos \tfrac{2\pi}{9} + \cos \tfrac{4\pi}{9} = \tfrac12.\)
Question 43
Let \(a,b,c\) be sides of a triangle. Prove: \[ \frac{a}{b-c} + \frac{b}{c-a} + \frac{c}{a-b} = \frac{(a+b+c)(a^2 + b^2 + c^2 - bc - ca - ab)}{(b-c)(c-a)(a-b)}. \]
Question 44
For \(n\) odd, prove \(\displaystyle \prod_{k=1}^{\frac{n-1}{2}} \sin\Bigl(\tfrac{k\pi}{n}\Bigr) = \frac{\sqrt{n}}{2^{\frac{n-1}{2}}}.\)
Question 45
Evaluate \(\displaystyle \sum_{k=1}^n (-1)^{k-1} \cos\bigl((2k-1)\theta\bigr)\).
Question 46
In \(\triangle ABC\), if \(\angle A = 2\angle B\), prove \(\frac{b}{a+c} + \frac{c}{a+b} = \tfrac12.\)
Question 47
Prove \(\cos 36^\circ = \frac{\sqrt{5}+1}{4}\).
Question 48
For \(|z|=1\), show \(\Im\!\bigl(\tfrac{1+z}{1-z}\bigr) = \cot\bigl(\tfrac{\arg z}{2}\bigr).\)
Question 49
If \(p+q+r=\pi\), prove \(\sin(2p)+\sin(2q)+\sin(2r)=4\,\sin p\,\sin q\,\sin r\).
Question 50
For \(\theta\in\bigl(0,\tfrac{\pi}{2}\bigr)\), show \(\cos^3\theta + \sin^3\theta + \cos^3(2\theta) + \sin^3(2\theta) \;\le\; 2.\)
Question 51
Prove \(\tan^2 36^\circ + \tan^2 72^\circ + 1 = 4\,\tan 36^\circ\, \tan 72^\circ.\)
Question 52
For \(\theta \neq \tfrac{\pi}{2}+k\pi\), prove \(\sec \theta + \tan \theta - \csc \theta - \cot \theta = \frac{2(\sin \theta - \cos \theta)}{\sin \theta \cos \theta}.\)
Question 53
In \(\triangle ABC\), let \(a^2 + b^2 = 3c^2\). Prove \(\angle C=60^\circ\).
Question 54
If \(\alpha+\beta+\gamma=\pi\), prove \(\tan\alpha + \tan\beta + \tan\gamma \;\ge\; \sqrt{3\,\bigl(\tan^2\alpha + \tan^2\beta + \tan^2\gamma\bigr)}.\)
Question 55
Prove \(\sum_{k=1}^{n} (-1)^k \cos^3(kx) = \frac{1}{4}\Bigl[\sum_{k=1}^{n} (-1)^k \cos(3kx) + 3\sum_{k=1}^{n} (-1)^k \cos(kx)\Bigr].\)
Question 56
In a cyclic quadrilateral \(ABCD\), \(\angle A+\angle C=180^\circ\). Show \[ AC\cdot BD = AB\cdot CD + BC\cdot AD \] if and only if \(ABCD\) is a right trapezoid.
Question 57
If \(\cos x + \cos 2x + \dots + \cos nx=0\) and \(\sin x + \sin 2x + \dots + \sin nx=0\), prove \(\cos(kx)+\cos((n-k)x)=0\) for \(k=1,\dots,n-1.\)
Question 58
In \(\triangle ABC\) with \(A=60^\circ\), prove \(b^2 + c^2 - bc = a^2.\)
Question 59
For \(|z|=1\), consider \(\bigl|1 - z + z^2 - z^3 + \dots + z^{2n}\bigr|\). Show whether it is always \(\ge 1\) or provide a counterexample.
Question 60
In \(\triangle ABC\), suppose \(b^2 + c^2 - a^2 = bc\). Prove \(\angle A=30^\circ\).
Question 61
For \(|x|<\tfrac{\pi}{2}\), prove \(\frac{\sin x}{x} \;\le\; \frac{\tan x}{x} \;\le\; 1+\frac{x^2}{2}\), with no derivatives.
Question 62
For real \(\theta\), prove \(\tan \theta + \sec \theta = \csc\bigl(\tfrac{\pi}{2}-\theta\bigr) + \cot\bigl(\tfrac{\pi}{2}-\theta\bigr).\)
Question 63
Show \[ \sum_{k=0}^{n} \binom{n}{k}\sin\!\bigl((n-2k)x\bigr) = \frac{\sin\!\bigl((n+1)x\bigr)}{\sin x}. \]
Question 64
In an acute triangle \(ABC\), let \(H\) be the orthocenter. Show \(\angle BHC = 180^\circ - A.\)
Question 65
Show \(\displaystyle \sum_{k=1}^n (-1)^{k-1}\sin(2kx) = \frac12 \Bigl[\cot x - \cot\bigl((2n+1)x\bigr)\Bigr].\)
Question 66
Let \(z=\cos x + i\sin x\). Show \(\frac{1}{\sin x}=\frac{z-z^{-1}}{2i},\;\frac{1}{\cos x}=\frac{z+z^{-1}}{2}\), assuming \(\sin x,\cos x\neq 0\).
Question 67
Prove the reflection formula for cotangent: \(\cot(\pi - x) = -\cot x.\)
Question 68
In \(\triangle ABC\), if \(AB=2BC\) and \(\angle A=2\angle B\), prove \(AC=AB\).
Question 69
Show \(\displaystyle \sum_{k=1}^{n-1} \frac{1}{\sin^2\!\bigl(\tfrac{k\pi}{2n+1}\bigr)} = n(2n+1).\)
Question 70
Prove \(\tan(75^\circ) + \tan(15^\circ) = 4.\)
Question 71
In \(\triangle ABC\) with sides \(a,b,c\), prove \(\frac{a}{b+c-a} + \frac{b}{c+a-b} + \frac{c}{a+b-c} \;\ge\; 6.\)
Question 72
If \(|\sin x|\le|\cos x|\), prove \(\sin(3x)\le \cos(3x)\).
Question 73
Prove \(\sin x + \sin 2x + \dots + \sin nx \;\le\; \frac{1}{\sin(\tfrac{x}{2})}\), for \(0
Question 74
Let \(P(x)=\sin\bigl(n\arcsin x\bigr)\). Show \(P(x)\) is a polynomial of degree \(n\) in \(x\), and find the leading coefficient.
Question 75
For angles \(\alpha,\beta\in(0,\pi)\), show \(\sec\alpha + \sec\beta \;\ge\; 4\sec\!\Bigl(\frac{\alpha + \beta}{2}\Bigr).\)
Question 76
Prove \(\sin \tfrac{\pi}{7}\,\sin \tfrac{2\pi}{7}\,\sin \tfrac{3\pi}{7} = \frac{\sqrt{7}}{8}.\)
Question 77
In \(\triangle ABC\) with \(A=60^\circ\), prove \(\frac{b+c}{a} + \frac{a}{b+c} = 2\cos B\,\cos C + 2.\)
Question 78
For integer \(n\ge 1\), prove \(\displaystyle \prod_{k=1}^{n} \bigl(1+2\cos(\tfrac{2k\pi}{2n+1})\bigr) = 2n+1.\)
Question 79
In a cyclic quadrilateral \(ABCD\), Ptolemy's theorem holds. Extend it to show: \[ AC \cdot BD + AB \cdot CD \;\ge\; BC\cdot AD + (AB + CD)^2, \] or argue if there’s an error.
Question 80
Show \(\displaystyle \sum_{k=1}^{n-1}\cot^2\Bigl(\tfrac{k\pi}{2n}\Bigr) = \frac{(n-1)(2n-1)}{3}.\)
Question 81
For real \(x\), show \(\displaystyle \frac{\sin^3 x}{\cos x - \sin x} \;+\; \frac{\cos^3 x}{\sin x - \cos x} \;=\;\sin x + \cos x. \)
Question 82
In \(\triangle ABC\), show \(\tan(A+B)+\tan(B+C)+\tan(C+A) = \tan A\,\tan B\,\tan C.\)
Question 83
For \(x\in(0,\tfrac{\pi}{2})\), prove \(x\cot x \;\ge\; 1 - \tfrac{2x^2}{\pi^2}\), without derivatives.
Question 84
Let \(m\) be an integer. Show \(\sin(mx) = 2^{m-1}\displaystyle \prod_{k=0}^{m-1} \sin\Bigl(x + \tfrac{k\pi}{m}\Bigr)\) if \(m\) is even (analogous expression if \(m\) is odd).
Question 85
In a cyclic hexagon \(ABCDEF\), show \[ AB\cdot CD\cdot EF + BC\cdot DE\cdot FA \;\ge\; AC\cdot CE\cdot EA + BD\cdot DF\cdot FB. \]
Question 86
If \(|z|=1\) and \(\sum_{k=1}^{n} z^k = 0\), prove \(\sum_{k=1}^{n} k\,z^k=0.\)
Question 87
If \(\alpha+\beta+\gamma=\pi\), prove \[ \cot \alpha + \cot \beta + \cot \gamma \;\ge\; \sqrt{9+8\,\cot \alpha\,\cot \beta\,\cot \gamma}. \]
Question 88
For \(|x|<\tfrac{\pi}{2}\), show \(\bigl|\sin x + \sin 2x + \dots + \sin nx\bigr| \;\le\; \frac{1}{|\sin(\tfrac{x}{2})|}.\)
Question 89
In an isosceles trapezoid \(ABCD\) (\(AB \parallel CD\), \(AB>CD\)), suppose \(\angle A=2\angle B\). Show \(AB=2\,CD\).
Question 90
For \(\theta \in \bigl(0,\tfrac{\pi}{2}\bigr)\), show \(\frac{\sin \theta}{\theta} \;\le\; \frac{\tan \theta}{\theta} \;\le\; \frac{2}{\sqrt{3}}.\)
Question 91
For \(n>2\), prove \(\displaystyle \sum_{k=1}^{n-1} \cot^2\Bigl(\tfrac{k\pi}{n}\Bigr) = \frac{(n-1)(2n-1)}{3} - (n-1).\)
Question 92
Prove \(\displaystyle \prod_{k=1}^{n-1}\bigl(\cos\tfrac{k\pi}{n}+1\bigr) = n,\quad n>2.\)
Question 93
Show \(\displaystyle \frac{\sin(nx)}{\sin x} = \sum_{k=0}^{\lfloor\frac{n-1}{2}\rfloor} (-1)^k \binom{n}{2k+1}\cos^{\,n-2k-1}(x)\,\sin^{\,2k}(x). \)
Question 94
Let \(a,b,c\) be sides of a triangle. Show \(\sqrt{ab+bc+ca} + \sqrt{a^2+b^2+c^2} \;\ge\; a+b+c + \sqrt{3\,(abc)^{\frac{2}{3}}}.\)
Question 95
In \(\triangle ABC\) with \(A=60^\circ\), show \(b+c \;\ge\; 2a\), with equality iff the triangle is equilateral.
Question 96
For \(n\) odd, show \(\displaystyle \prod_{k=1}^{\frac{n-1}{2}} 2\sin\Bigl(\tfrac{k\pi}{n}\Bigr) = \sqrt{n}.\)
Question 97
Prove \(\cot x - \tan x = 2\,\cot(2x).\)
Question 98
Show \(\tan 20^\circ \cdot \tan 40^\circ \cdot \tan 60^\circ \cdot \tan 80^\circ = 3.\)
Question 99
If \(A+B+C=\pi\) in \(\triangle ABC\), show \[ \sum_{\text{cyc}} \frac{\sin A}{\sin B\,\sin C} = \sum_{\text{cyc}} \frac{a}{bc} = \frac{1}{r}, \] where \(r\) is the inradius.
Question 100
Let \(x_1,x_2,\dots,x_{2n}\) be real angles with \(x_1+\dots+x_{2n}=\pi\). Prove \(\displaystyle \prod_{k=1}^{2n}\sin x_k \;\le\; \frac{1}{2^{2n-1}}.\)